PAC meeting BNL, 12 September 2006

LOI: deuteron ion EDM (dEDM) to 10-29 e-cm

Y. K. Semertzidis, BNL for the Storage Ring EDM Collaboration

•Resonance EDM method using 1.5GeV/c deuterons in a 5m×10m storage ring

•Using well established accelerator techniques

•EDM Study of d, P, ³He, ... is possible with same method $\frac{d\vec{S}}{dt} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E}$

Elements of a successful EDM experiment

• High intensity, highly Polarized source with well defined initial state

• Interact with a strong E-field for a long time

• Analyze as a function of time, with high efficiency, high analyzing power (asymmetry)

Resonance Electric Dipole Moment Method

Y. Orlov et al., PRL 96, 214802 (2006)

- High intensity (~10¹²/cycle), horizontally polarized deuteron beam
- Coherent synchrotron tune equals the g-2 tune → Rabi resonance: Effective rest frame E-field is oscillating at the g-2 frequency
 - EDM signal: Change of vertical component of spin in time

Motivation

<u>Applying accelerator techniques</u> <u>established for ~50 years</u>

 High intensity (~10¹²/cycle), highly polarized, low emittance deuteron beams are available

Interact in a strong E-field (ala Rabi resonance technique)

 deuteron polarimeters are available, with high analyzing power for ~1.5 GeV/c d-momentum

Storage Ring EDM Collaboration

Letter of Intent: <u>Development of a Resonance Method</u> to Search for a Deuteron Electric Dipole Moment <u>using a Charged Particle Storage Ring</u>

D. Babusci,⁸ M. Bai,⁴ G. Bennett,⁴ J. Bengtsson,⁴ M. Blaskiewicz,⁴
G. Cantatore,¹⁷ P.D. Eversheim,² M.E. Emirhan,¹¹ A. Facco,¹³ A. Fedotov,⁴
A. Ferrari,⁸ G. Hoffstaetter,⁶ H. Huang,⁴ M. Karuza,¹⁷ D. Kawall,¹⁴
B. Khazin,⁵ I.B. Khriplovich,⁵ I.A. Koop,⁵ Y. Kuno,¹⁵ D.M. Lazarus,⁴
P. Levi Sandri,⁸ A. Luccio,⁴ K. Lynch,³ W.W. MacKay,⁴ W. Marciano,⁴
A. Masaharu,¹⁵ W.M. Meng,⁴ J.P. Miller,³ D. Moricciani,¹⁶ W.M. Morse,⁴
C.J.G. Onderwater,⁹ Y.F. Orlov,⁶ C.S. Ozben,¹¹ V. Ptitsyn,⁴ S. Redin,⁵
G. Ruoso,¹³ A. Sato,¹⁵ Y.K. Semertzidis,^{4,*} Yu. Shatunov,⁵ V. Shemelin,⁶
A. Sidorin,¹² A. Silenko,¹ M. da Silva e Silva,⁹ E.J. Stephenson,¹⁰
G. Venanzoni,⁸ G. Zavattini,⁷ A. Zelenski,⁴ I. Ben-Zvi⁴

¹Belarusian State University, Belarus ²University of Bonn, Bonn, D-53115, Germany ³Boston University, Boston, MA 02215 ⁴Brookhaven National Laboratory, Upton, NY 11973 ⁵Budker Institute of Nuclear Physics, Novosibirsk, Russia ⁶Cornell University, Ithaca, NY 14853 ⁷University and INFN, Ferrara, Italy ⁸Laboratori Nazionali di Frascati dell'INFN, Frascati, Italy ⁹University of Groningen, NL-9747AA Groningen, the Netherlands ¹⁰Indiana University Cyclotron Facility, Bloomington, IN 47408 ¹¹Istanbul Technical University, Istanbul 34469, Turkey ¹²JINR, Moscow Russia ¹³Legnaro National Laboratories of INFN, Legnaro, Italy ¹⁴University of Massachusetts, Amherst, MA 01003 ¹⁵Osaka University, Osaka, Japan ¹⁶Dipartimento di Fisica, Universita' "Tor Vergata" and Sezione INFN, Rome, Italy ¹⁷University and INFN Trieste, Italy

Deuteron Statistical Error:

- τ_p : 1000s Polarization Lifetime (Coherence Time)
- **A** : 0.36 The left/right asymmetry observed by the polarimeter
- *P*: 0.95 The beam polarization

: 1.2T

- N_c : 10¹²d/cycle The total number of stored particles per cycle
- T_{Tot} : 5000h/yr. Total running time per year
- f : 0.042 Useful event rate fraction
- $\delta \beta_0 / \beta_0$: 0.01 Velocity modulation
 - The average magnetic field around the ring

$$\sigma_d \approx 2 \times 10^{-29} \,\mathrm{e} \cdot \mathrm{cm}$$
 / year

Major Concepts in Place:

Polarized source, spin manipulation, high efficiency injection

- Analyzing method
- Spin Dynamics

Systematics

Simultaneously Controlled Experiments

Bunches:

- EDM: Spin Up
- EDM: Spin Down
- No EDM effect

Three classes of systematic errors

<u>Source</u>	Examples	Remedy
Beam dynamics	Losses	Red minus Blue
Beam dynamics	Motion	Red minus Blue
Polarimetry	Gain effects	Red minus Blue
Spin dynamics	Oscillating B_r	Tune1 minus Tune2
Spin dynamics	Comb. B_v with B_l or B_r (geom. phase)	Tune1 minus Tune2

• PAC Physics Endorsement

 Support for full proposal (2007) and Technical Review

Support for a FY2007 proposal:

• Beam and spin dynamics studies

• Engineering support for a cost estimate

• Support for visitors/consultants

Beam and Spin Dynamics Studies

• To optimize the lattice design

 To maximize the number of tools to deal with the (many) unanticipated systematic errors

Storage Ring Electric Dipole Moments

- d @ 10⁻²⁹e·cm would be the best EDM sensitivity over *present* or *planned* experiments for θ_{QCD}, quark, and quark-color (T-odd Nuclear Forces) EDMs.
- This LOI is for d. P, ³He, etc., are natural extensions i.e. a facility to pin down the CP-violation source.
- Well defined initial state to study EDM

The other EDM efforts

7 Appendix I: EDM Efforts Reported at Lepton Moments Symposium

A White Paper summarizing all EDM efforts is being prepared and will be finished before we submit a proposal. Here, we give a brief summary of the experimental talks on EDMs from the recent Third International Symposium on Lepton Moments. All the presentations are now available on the Symposium web site <u>http://g2pc1.bu.edu/lept06/</u>.

Ed Hinds - Imperial College	Measurement of the electron EDM using cold YbF molecules	~10 year
David DeMille - Yale	The PbO experiments at Yale	
Eric Cornell - JILA/Colorado	Searching for an electron EDM	
	in trapped molecular ions	New
Neil Shafer-Ray - Oklahoma	Possible measurement of the electron EDM	efforts
	with g=0 paramagnetic molecules	J

Table 3: Talks on EDMs of Molecules.

Support for a FY2007 proposal:

- Beam and spin dynamics studies (1 month FTE each):
 - 1. Injection and RF-Capture scheme
 - 2. Spin coherence time
 - 3. Spin tracking, detailed systematic studies
- Engineering support for a cost estimate (1 month FTE)
- Support for visitors, consultants (\$25K for Yuri Orlov for FY2007)

Two half beam technique (RF-Quadrupole)

Backgrounds are vertical tune dependent; EDM signal is not!

Resonance EDM systematic errors

Examples: 1) Skew quadrupole where $D \neq 0$,

2) RF-cavity (vertical offset or misalignment), ...
3) ...

Remedy: They depend on the vertical tune... They all do!

Deuteron EDM at BNL

- Great physics opportunity; it will not be done at LHC
- The Infrastructure is there (polarized source, spin manipulating devices, ...).
- The human factor: Hadron and spin expertise, the best in the world.
- Compatible with the lab mission: The nuclear physics lab of US, QCD Lab, $\theta_{\rm QCD}$

Deuteron EDM at BNL

- Home of the successful (and sophisticated) muon g-2 experiment.
- Moderate cost to build a 5m by 10m ring
- Moderate Intensity, compatible with current conditions
- Moderate power cost for running it: ~1.5GeV/c. One pulse every ≈1000s.

 The Infrastructure for ions is there (no polarized source or spin manipulating devices). LEIR is going to be sitting idle for >10 months per year!

• The human factor: Hadron expertise

• Enthusiastic invitation (John Ellis, Jos Engelen,...)

LEIR as a possible location for the Orlov ring

Nuclear Scattering as Deuteron EDM polarimeter

A Permanent EDM Violates both T

Amplification in deformed radium atoms

Big enhancement ~10⁴ from atomic degeneracy.
 Additional factor from octupole deformation?

1. $\langle S_z \rangle_{Hg} = 0.00g_{\pi}g_0 + 0.06g_{\pi}g_1 - 0.01g_{\pi}g_2 \text{ e.fm}^3$ 2. $\langle S_z \rangle_{Ra} = -1.5 g_{\pi}g_0 + 6.0 g_{\pi}g_1 + 4.0 g_{\pi}g_2 \text{ e.fm}^3$

J. Dobaczewski, J. Engel, PRL 94, 232502 (2005).

Caveat: all these calculations employ an incomplete Schiff operator, cf. C.-P. Liu, W.C. Haxton, M.J. Ramsey-Musolf, RT, A.E.L. Dieperink, nucl-th/0601025.

Solid State Electron EDM Search at 50mK

Estimated sensitivity 10^{-30} e·cm, no sensitivity to θ_{qcd}

Limit on the Electron Electric Dipole Moment in Gadolinium-Iron Garnet

B. J. Heidenreich, O. T. Elliott, N. D. Charney, K. A. Virgien, A. W. Bridges, M. A. McKeon, S. K. Peck, D. Krause, Jr., J. E. Gordon, and L. R. Hunter

Physics Department, Amherst College, Amherst, Massachusetts 01002, USA

S. K. Lamoreaux

Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Received 14 September 2005; published 15 December 2005)

A new method for the detection of the electron electric dipole moment (EDM) using a solid is described. The method involves the measurement of a voltage induced across the solid by the alignment of the sample's magnetic dipoles in an applied magnetic field, H. A first application of the method to GdIG has resulted in a limit on the electron EDM of $5 \times 10^{-24}e$ cm, which is a factor of 40 below the limit obtained from the only previous solid-state EDM experiment. The result is limited by the imperfect discrimination of an unexpectedly large voltage that is even upon the reversal of the sample magnetization.

DOI: 10.1103/PhysRevLett.95.253004

PACS numbers: 32.10.Dk, 11.30.Er, 14.60.Cd, 75.80.+q

Table 1: Features of the resonance EDM search method

Velocity modulation g-2 precession EDM precession Polarization monitor Signal size leading to an asymmetry sens. Similar asymmetry experiments

Systematic problem

- (1) Oscillating B_r
- (2) Polarimeter alignment
- (3) High g 2 precession harmonics

at the g - 2 frequency in the ring plane perpendicular to the ring plane continuous, scattering from thick C target $\sim 1\mu \text{rad}/1000\text{s}$ in dS_y/dt at $d = 10^{-29} \text{ e}\cdot\text{cm}$ 3×10^{-7} per 1000 s beam store Parity violation, with $< 10^{-7}$ asymmetry [12, 13]

Remedy

alternating vertical tune bunches alternate bunches with reversed EDM signal momentum compaction factor $\alpha_p = (\Delta L/L)/(\Delta_p/p) = 1$

Resonance Electric Dipole Moment Method

PRL 96, 214802 (2006)

PHYSICAL REVIEW LETTERS

week ending 2 JUNE 2006

Resonance Method of Electric-Dipole-Moment Measurements in Storage Rings

Yuri F. Orlov,^{1,2} William M. Morse,¹ and Yannis K. Semertzidis¹

¹Brookhaven National Laboratory, Upton, New York 11973, USA ²Laboratory for Elementary-Particle Physics, Cornell University, Ithaca New York 14853, USA (Received 12 December 2005; published 1 June 2006)

A "resonance method" of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles' velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes—one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

DOI: 10.1103/PhysRevLett.96.214802

PACS numbers: 29.20.Dh, 13.40.Em

In search of new physics through precision Electric Dipole Moment Experiments

Main competition: Neutron EDM

Ideas to work (together)

 Synchrotron tune ~0.18, dv/v~1-3%, RF-cavity 10-20 MV

Coherence time

Polarimeter Integration

• Systematics

RF-Cavity issues

 Synchrotron tune ~0.18, dv/v~1-3%, RFcavity 10-20 MV

Mei Bai, <u>M. Blaskiewicz</u>, <u>Ilan Ben-Zvi</u>, A. Facco, Alfredo Luccio, Y.Orlov, <u>V. Shemelin</u>, ... Triple Spoke at β =0.62

Frequency	345 MHz
β₀	0.63
L(3βλ/2)	82 cm
QR _S (G)	93 Ω
R/Q	549 Ω
below for E_{AC}	_c =1.0 MV/m
RF Energy	0.565 J

- 4 cm diameter beam aperture
- Transverse diameter 45.8 cm,
- Interior length of 85 cm.
- Can be scaled to 239 MHz with corresponding 18% increase in all dimensions and voltage.
- 20 MV possible with 2 cavities.
- Refrigeration: 10.6 MV/m with 270 W

Coherence time issues

• Goal of 1000 s

• Use sextupoles, and possibly decapoles

 Needs to work at two different n-values (systematics)

G. Onderwater, Y.Orlov, <u>V. Ptitsyn</u>, Y. Shatunov

Polarimeter issues

- Asymmetry
- Efficiency

• Integration with rest of the experiment

<u>E. Stephenson</u>, G. Onderwater, A. Ferrari (M.C.).

Systematics, collective effects

- Tune dependence of *B_r*, systematic error
- Functional form of image charges interference
- Wake fields
- Beam tube wall resistance
- Tune shifts and other collective effects

M. Blaskiewicz, <u>A. Fedotov</u>, B. Morse, Y.Orlov, YkS, <u>A. Sidorin</u>,...

Other EDM efforts

 Appendix I: Efforts reported at Third International Symposium "Lepton Moments". <u>http://g2pc1.bu.edu/lept06</u>

 I am the coordinator for EDM/g-2 part of WG3 of "Flavour in the era of LHC" at CERN and a yellow report is due early next year. <u>http://cern.ch/flavlhc</u>

Electric Dipole Moments in Storage Rings

$\frac{d\vec{s}}{dt} = \vec{d} \times \left(\vec{v} \times \vec{B}\right)$

e.g. 1T corresponds to 300 MV/m for relativistic particles

Vertical Spin Component without Velocity Modulation

<u>Vertical Spin Component with Velocity</u> <u>Modulation at ω</u>_a

Time

<u>Vertical Spin Component with Velocity</u> <u>Modulation (longer Time)</u>

Velocity (top) and g-2 oscillations

The synchrotron oscillation phase (top) compared to g-2 phase (bottom). ~5us total horizontal scale

RF-fields and oscillation phases

Effect of the vertical offset, YkS note #85

Figure 1. The vertical spin precession rate in μ rad/s versus the phase difference (ϕ) between the synchrotron oscillations and the g-2 precession in degrees (modulo 180°) for an RF-cavity offset of 10 μ m is shown. An overlay of the function 300 μ rad/s * sin(ϕ) is also shown.

Effect of the angular offset, YkS note #92

Figure 1. The effect of a misaligned cavity depends on the relative phase between the synchrotron and g-2 oscillations. This dependence is very different from the EDM effect dependence.

Two classes of systematic errors

- Beam and polarimeter related (e.g. beam losses, beam displacement, detector gain effects,...)
- Spin dynamics related (second order spin resonances, e.g. B_r correlated with momentum oscillations, or an unfortunate combination of B_v and B_l (geometrical effect))
- Consecutive stored bunches have different EDM effects.
- Background effects depend on the vertical tune, the EDM does not.