Relativistic Heavy Ion Overview

NSAC Sub-committee presentation

W.A. Zajc Columbia University

Questions Addressed by Relativistic Heavy Ion Physics²

- Overarching questions:
 - Are there new states of matter at extremely high temperature and density?
 - Can we explore the phase structure of a fundamental gauge theory via nuclear collisions?
 - Can the study of strongly-coupled QCD matter inform our understanding of other gauge theories (including gravity)?

(See back-up material for compendium)

Questions Addressed by Relativistic Heavy Ion Physics³

• Discovery oriented questions:

Is there a critical point in the QCD phase diagram?

Are exotic (locally CP-violating) states of matter formed in nuclear collisions?

At what (energy, mass, length) scale does the perfect liquid become resolvable into the underlying quarks and gluons?

(See back-up material for compendium)

Questions Addressed by Relativistic Heavy Ion Physics⁴

Precision directed questions:

- What is the value of η/s and does it respect the conjectured quantum bound?
- What is the numerical value (and energy dependence) of the coupling constant in the quark-gluon plasma at RHIC and LHC energies?
- What is the value of the jet energy loss parameter, and is it consistent with purely perturbative calculations?
- What are the magnitudes of cold nuclear matter (CNM) effects as a function of probe, root-s, and momentum, and how do these impact precision measurements in hot nuclear matter?

(See back-up material for compendium)

Exploring the Phase Structure of Fundamental Theories

Structure of Matter via Phase Diagrams

6

QED

$$\mathcal{L}_{QED} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m_e)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

	G	ROUP		PE	ERI	OD	OIC	TA	BL	E (DF	TH	EE	ELE	EMI	EN'	TS		
0	1	LA 1.0079			\geq	\geq	\leq	72	777	77	[]/	12		Arg	://www.ktf-	split.hr/per	iodni/en/		18 VIIIA
RIOI	1	H			RELATIVE ATOMIC M		GROUP CAS	< <u></u>	elal 📘	Semimetal	Nonm	- 44							He
5	- 10	OROGEN	2 114	GRO				김 말~	kali metal	tal 16 Chalcogens elemen			M 🔨	13 114		15 VA	16 VIA		HELIAN
	3	6.941	4 9.0122 ATOMIC 1		NUMBER 5 10.811				caine earch in anailíon metai	In Noble cas				5 10.811	6 12.011	7 14.007 8 15.999		9 18.998	10 20.180
	2	Li	Be		SYMBOL B			158	Lanthanide	e STANDARD STATE (25 10: 101 MP)				B	C	N	0	F	Ne
		UTHUM	BERYLLINA	/	BORON				Actinide	Ne - gas Fe - sold			~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	BORON	CARBON	NTROSEN	OKYGEN	FLUORINE	NECH
	< 11	22.990	12 24,305			1		<u> </u>	1	Ga	- liquid	°ic ∙ synthe	fic .	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
	3	Na	Mσ			MENT NAME					/	/		41	Si	P	S	CL	Ar
		NUIDOL	MAGNESUM	3 118	4 IVB	5 VB	6 VIB	7 VIB	8	• VIIIB -	10	11 18	12 118	AUMINUM	SLICON	PHOEPHORUS	SALPHUR	CHLORINE	ARGON
	19	39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80
	4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cn	Zn	Ga	Ge	As	Se	Br	Kr
	PC	TASSUM	CALCUM	SCANDUM	TIANUM	VANADUM	CHROMEM	MANGANESE	IRCN.	CODALT	NCHEL	COPPER	ZNC	GALLEN	OFRMANUM	ARIENC	SELENIN	DROMINE	KRIPTON
	37	85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (96)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
	5	Rh	Sr	v	Zr	Nb	Mo	The	Ru	Rh	Pd	Δσ	Cd	In	Sn	Sh	Te	I	Xe
	R	NOON	STRONTILM	YTTRUM	ZIRCONUM	NORUM	MOLYBOENAN	TECHNETIUM	RUTHENUM	PHODIUM	PALLADIUM	GIVER	CADMUM	INDIAM	TN	ANTIMONY	TELLURIUM	IDDINE	XENON
	55	5 132.91	56 137.33	\$7-71	72 178.49	73 180.95	74 103.04	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	89 200.59	81 204.38	82 207.2	83 208.96	84 (209)	85 (210)	86 (222)
	6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	An	Hø	TI	Ph	Bi	Po	At	Rn
		AEGUN	DARIUM	Lanthanide	INFINIM	TANTALUM	TUNGSTEN	PHENUM	OSMUN	INDIAN	PLATINUM	0010	MERCURY	THALLAM	LEAD	BISMUTH	POLONUM	ASTATINE	BADON
	87	(223)	88 (226)	89-103	104 (261)	105 (262)	106 (296)	107 (264)	108 (277)	109 (268)	110 (201)	111 (272)	112 (205)		114 (209)			· · ·	
	7	Fr	Ra	Ac-Lr	TRI	IDIb	Sa	TRIh	THIS	Mit	TUInm	TUTTOTO	Umb		Umm				
		MUDIA	RADIUM	Actinide	RITHERFORDER	DUDNUM	SEABOROUN	BOHRUM	HASSUM	METNERUM	UNUNNUUM	UNUNUNUM	UNUNDIUM		NUNQUOUN				
					LANTHAN	DE		1.00					10	44 mm m 47 mm m 48 mm m		Copyright C 1998-2003 ErriC. (oni@kif split hr)			
73	elative atomic mass is shown with five				57 130.91	38 140.12	39 160.91	00 164.24	170	62 150.36	101.96	64 157.25	65 158.90	00 162.90	07 104.93	68 167.26	09 166.93	N 173.04	71 174.97 ¥
1	uclides,	the value	enclosed in unber of the lor	brackets yost-lived	La	Ce	Pr	Na	1P1m	Sm	Eu	Gđ	10	Dy	HO	Er	Im	XD	Lu
-	otope of the element.				LANTHANUM CERUM (MECONNUM/NECONNUM/NECONNUM/NECONNUM/ EUROPUM GADOLINUM TERBUM DYSPROSIUM HOLMUM ERBUM THULUM YTTERBUM LU													LUTETIUM	
(1) Pure Appl. Chem., 73, No. Relative atomic mass is significant/guess, Forelets modules, the value ere indicates the mass number isotope of the element. However these such down do have a characteristic composition, and for these	oristic terrestric these an atomic	if isotopic cweight is	89 (227) 90 232 04 91 231 04 92 238 03 93 (237) 94 (244) 95 (247) 96 (247) 97 (247) 98 (251) 99 (252) 100 (257) 101 (256) 102 (25									102 (259)	103 (202)						
sabulated.					Ac	Th	Pa	II	Nm	TiDom	Am	Camo	TRILE	1748	IFC	Time	Individ	No	II re
					AC	111	ra	0	rallo	n.m	w/		anon		10.00	IT IIII	TATION	120	ITAL

QCD

$$\begin{aligned} \mathcal{L}_{QCD} &= \bar{\psi}(i\gamma^{\mu}D_{\mu} - \tilde{m})\psi - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a} \\ D_{\mu} &= \partial_{\mu} + igT_{a}G^{a}_{\mu} \end{aligned}$$

$$\begin{pmatrix} m_d & 0 & 0 \\ 0 & m_u & 0 \\ 0 & 0 & m_s \end{pmatrix} =$$

On the Meaning of Fundamental

 In principle, these diagrams are also "fundamental", in that they result from

$$\mathcal{L}_{QED} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - m_{e})\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$$D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

9

- But in practice, they are (deeply) emergent, and depend on:
 - $m_p/m_e = 1836.15$ $Z(^{12}C) = 6$ $Z(^{16}O) = 8$

"Natural" Appearance of the QCD Phase Transition

Fig. 3.5: The evolution of $g_*(T)$ as a function of temperature in the $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ theory.

The Experimental Tools

Two Facilities

RHIC

- First collisions 2000
- p+p, d+Au, Cu+Cu, Cu+Au, Au+Au, U+U
- √s_{NN} ~ 7 200 GeV
- Polarized protons

- First collisions 2010
- p+p, Pb+Pb
 (p+Pb in 2013)
- √s_{NN} =2.76 TeV (5.5 TeV in 2015-16)

Five Experiments

RHIC

• PHENIX

• ALICE

• ATLAS

LHC

• CMS

2007 Long Range Plan Recommendations¹⁴

phenomenological modeling, and new initiatives. Strategic investments in LHC detector instrumentation and computing, which leverage the capabilities of the existing LHC detectors, are required for significant and timely U.S. participation in the LHC heavy-ion program. Collectively, these investments will result in a dramatic advance in our understanding through quantitative comparison of theory and experiment. The synergies of RHIC and the LHC will lead to a much deeper understanding of the properties and dynamics of dense QCD matter.

UNDERWAY!

2007 Long Range Plan Recommendations¹⁵

RECOMMENDATION IV

The experiments at the Relativistic Heavy Ion Collider have discovered a new state of matter at extreme temperature and density—a quark-gluon plasma that exhibits unexpected, almost perfect liquid dynamical behavior. We recommend implementation of the RHIC II luminosity upgrade, together with detector improvements, to determine the properties of this new state of matter.

support. Detector upgrades at RHIC, which are part of Recommendation IV, will proceed over several years, and the accelerator modifications needed to implement beam cooling, which will significantly increase the RHIC luminosity, will be carried out between 2012 and 2015. Following this course, nuclear science in the United States will continue to have world-leading facilities into the future.

DONE!

Next Several Slides:

Discussion of the discovery of the "perfect liquid" and precision measurements of its (near)-perfection

A (Valid) Analogy

DISCOVERY..... PRECISION

2007 Long Range Plan Highlights

Near-Perfect Liquid

In one of the most surprising discoveries of the past few years, the hot matter that is formed when gold nuclei accelerated by the Relativistic Heavy Ion Collider (RHIC) collide seems to expand like an almost perfect liquid. A quantity used to characterize the resistance of liquids to flow-the ratio of the viscosity to entropy density—is smaller than for any other known liquid. It is so small, in fact, that it appears to be very close to a lower limit recently derived from the techniques of string theory, indicating that the quark-gluon plasma formed in the collisions at RHIC is a strongly coupled plasma and not a dilute gaseous plasma as originally expected. This finding opens a completely new area of physics—the study of extremely high-energy high-density plasmas whose microscopic and collective properties are dominated by quantum phenomena. One of the most important scientific challenges for the next decade is a quantitative exploration of this new state of matter.

Discovery - 2001

• Strong "elliptic flow" in $\sqrt{s_{NN}} = 130 \text{ Au+Au collisions}$:

An Aside on Nomenclature

20

Theory State of the Art 2003-4

• Reasonable agreement using *ideal* hydrodynamics

arxiv.org/abs/nucl-th/0306046

Simultaneously in 2003-4

- An estimate (bound?) on visocity appeared from string theory's AdS/CFT correspondence:
 - A Viscosity Bound Conjecture,
 - P. Kovtun, D.T. Son, A.O. Starinets, hep-th/0405231

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi}$$

⇒ Very important to quantify *departures* from ideal hydrodynamics

2004-8: Grappling With Non-Ideal Hydrodynamic²³

Seemingly insurmountable:

$$\begin{aligned} \tau_{\Pi} \dot{\Pi} + \Pi &= \Pi_{\mathrm{NS}} + \tau_{\Pi q} \, q \cdot \dot{u} - \ell_{\Pi q} \, \partial \cdot q - \zeta \, \hat{\delta}_{0,1} \Pi \, \theta \\ &+ \lambda_{\Pi q} \, q \cdot \nabla \alpha + \lambda_{\Pi \pi} \pi^{\mu\nu} \sigma_{\mu\nu} + \hat{\delta}_{0,2} \, \Pi^2 + \hat{\epsilon}_0 \, q \cdot q + \hat{\eta}_0 \, \pi^{\mu\nu} \pi_{\mu\nu} \end{aligned} \\ \tau_q \, \Delta^{\mu\nu} \dot{q}_\nu + q^\mu &= q^\mu_{\mathrm{NS}} - \tau_{q\Pi} \Pi \, \dot{u}^\mu - \tau_{q\pi} \, \pi^{\mu\nu} \, \dot{u}_\nu \\ &+ \ell_{q\Pi} \, \nabla^\mu \Pi - \ell_{q\pi} \, \Delta^{\mu\nu} \, \partial^\lambda \pi_{\nu\lambda} + \tau_q \, \omega^{\mu\nu} \, q_\nu - \frac{\kappa}{\beta} \, \hat{\delta}_{1,1} \, q^\mu \, \theta \\ &- \lambda_{qq} \, \sigma^{\mu\nu} \, q_\nu + \lambda_{q\Pi} \Pi \, \nabla^\mu \alpha + \lambda_{q\pi} \, \pi^{\mu\nu} \, \nabla_\nu \alpha \\ &+ \hat{\delta}_{1,2} \Pi \, q^\mu + \hat{\eta}_1 \, \pi^{\mu\nu} \, q_\nu \end{aligned} \\ \tau_\pi \, \dot{\pi}^{<\mu\nu>} + \pi^{\mu\nu} &= \pi^{\mu\nu}_{\mathrm{NS}} + 2 \, \tau_{\pi q} \, q^{<\mu} \dot{u}^{\nu>} \\ &+ 2 \, \ell_{\pi q} \, \nabla^{<\mu} q^{\nu>} + 2 \, \tau_{\pi \pi} \, q^{<\mu} \omega^{\nu>\lambda} - 2 \, \eta \, \hat{\delta}_{2,1} \, \pi^{\mu\nu} \, \theta \\ &- 2 \, \tau_\pi \, \pi_\lambda^{<\mu} \sigma^{\nu>\lambda} - 2 \, \lambda_{\pi q} \, q^{<\mu} \nabla^{\nu>\alpha} + 2 \, \lambda_{\pi\Pi} \Pi \, \sigma^{\mu\nu} \\ &+ \hat{\delta}_{2,2} \, \Pi \, \pi^{\mu\nu} - \hat{\eta}_2 \, \pi_\lambda^{<\mu} \pi^{\nu>\lambda} - \hat{\epsilon}_2 \, q^{<\mu} q^{\nu>} \end{aligned}$$

- Unknown Initial Conditions
- Eccentricity fluctuations
- Unknown equation of state
- Instabilities, acausal effects in relativistic viscous hydrodynamics

- Hadronic rescattering effects
- Bulk viscosity
- Numerical viscosity
- Finite size, core/corona effects

2008: Concordance

- BNL, April 2008:
 - Workshop on Viscous Hydrodynamics and Transport Models in Heavy Ion Collisions
 - Workshop Summary

M. Luzum and P. Romatschke Phys. Rev. C78:034915,2008.

2008-10: The Important Role of Fluctuations

- B. Alver and G. Roland, <u>Phys. Rev. C81, 054905 (2010)</u>
- Importance of higher harmonics
- $dn/d\phi \sim 1 + 2 v_2(p_T) \cos(2 \phi) + ...$

2008-10: The Important Role of Fluctuations

- B. Alver and G. Roland, <u>Phys. Rev. C81, 054905 (2010)</u>
- Importance of higher harmonics
 Persistence of "bumps" → small η/s !
 dn/dφ ~ 1 + 2 v₂(p_T) cos (2 φ) + 2 v₃(p_T) cos (3 φ) + 2 v₄(p_T) cos (4 φ) + ...
 Important in restricting allowed range of η / s.

Increasing Sensitivity

Higher harmonics help reduce uncertainty in η/s and initial conditions

arxiv.org/abs/1105.3928

2012 State of the Art – *Event-by-Event* Distributions²⁸

2

10

 Treatment of gauge field fluctuations at sub-nucleon scales:

-5

-10

-10

-5

0

x [fm]

5

B. Schenke, S. Jeon, C. Gale, Phys. Rev. C82, 014903 (2010); Phys.Rev.Lett.106, 042301 (2011)
B.Schenke, P.Tribedy,

R.Venugopalan, Phys.Rev.Lett. 108, 252301 (2012)

Bounding η /s at RHIC

Range of estimates:

- (Compilation) by A. Tang, R.J. Lacey)
- N.B. These are range estimates, not 1σ error bars.

Towards a Systematic Error Budget on η/s³⁰

• M. Luzum (Quark Matter 2012)

(Preliminary!) Experimental uncertainties +0.020 Initial eccentricity ± 0.050 • $v_n/\varepsilon_n = \text{constant}$ $\sim +0.010$ Thermalization time +0.030 Initialization of shear tensor +0.005Initial flow +0.050 Equation of State +0.015 Second-order transport coeff. +0.005 Bulk Viscosity $\sim \pm 0.010$ Deviation from boost-invariance / longitudinal fluct. $\sim +0.005$ Viscous correction to f.o. distribution +0.015 Other aspects of freeze out $\sim +0.025$

 Note: This emphasis on increased precision for η/s should not obscure the *paradigm shift* resulting from RHIC discoveries (next slide)

RHIC's Two Major Discoveries -> Paradigm Shift

Discovery of strong "elliptic" flow:

- Elliptic flow in Au + Au collisions at √s_{NN}= 130 GeV, STAR Collaboration, (K.H. Ackermann et al.). Phys.Rev.Lett.86:402-407,2001
- 473 citations

Discovery of strong "jet quenching"

Suppression of hadrons with large transverse momentum in central Au+Au collisions at √s_{NN} = 130 GeV, PHENIX Collaboration (K. Adcox *et al.*), Phys.Rev.Lett.88:022301,2002

664 citations

Implications

- The bulk behavior of "strongly-coupled QGP" (sQGP) depends only on $\alpha_s(T)$ and \hbar .
 - A true "quantum liquid".
- The very low value of $\eta/s \Rightarrow$ no quasiparticles.
 - Urs Wiedemann, Quark Matter 2012: "This plasma is unique in that it does not carry quasi-particle excitations"
 - National Academy Decadal Survey: "Does the QGP have a particulate description at any length scale?"

2007 Long Range Plan

Jet Quenching

QCD jets occur in all kinds of very-high-energy collisions, arising from the hard scattering of incoming quarks and gluons and their subsequent breakup into a characteristic spray of particles that are measured in a detector. Jets have been observed at RHIC in proton-proton, deuteron-gold, and gold-gold collisions. But a dramatic change occurs in the jet distributions from gold-gold collisions. When collisions are nearly head-on, the typical pattern of back-to-back jets, which are clearly seen in proton-proton and deuteron-gold collisions, disappears and only one jet is observed. This jet quenching indicates that the scattered quarks and gluons that would produce the second jet undergo large energy loss-corresponding to a density that is 100 times that of normal nuclei—as they traverse the matter formed in the collision. Recent results further suggest that the energy lost by the high-energy jets may appear as a collective "sonic boom." If this suggestion proves correct, it will allow determination of the speed of sound in this new matter. The effect of jet quenching may open a new way for us to probe the gluon density distribution of the matter-the quark-gluon plasma-formed in these violent collisions.

Next Several Slides:

Describing the key interplay between RHIC and LHC measurements towards (ongoing) efforts to develop a concordance on "jet quenching".

Plasma Diagnostics

- Needed: Tools to interrogate sQGP at small distances
- Intrinsic scales of the sQGP:
 - T ~ 200 MeV
 - ▶ gT ~ 500 MeV ~ gluon effective mass
- Hard processes provide a wide variety of perturbative scales:
 - ▶ M_c ~ 1.3 GeV
 - ▶ M_b ~ 4.2 GeV
 - ▶ M_W ~ 80 GeV
 - ▶ M_Z ~ 90 GeV
 - Q ~ 10-300 GeV

Plasma Diagnostics (Cont'd)

• 0-th order: R_{AA} ($p_T \neq \frac{\text{Measured Yield in } A + A}{\text{Expected Yield from Scaled } p + p}$

Differential studies versus:

impact parameter, reaction plane, away-side partner; flavor tagging, tagged photons, complete jet reconstruction...
The Intellectual Challenges and Rewards ³⁷

- Challenge: Solving a multi-scale, highly dynamic transport problem in an intrinsically quantum system
- Rewards:
 - Possible resolution of quasiparticles
 - Measurement of transport coefficients

$$\hat{q} = \frac{\left\langle p_T^2 \right\rangle_L}{L} \qquad \hat{e} = \frac{\left\langle \Delta E \right\rangle_L}{L}$$

in a fundamental gauge theory

An Early Attempt

 Quantitative Constraints on the Transport Properties of Hot Partonic Matter from Semi-Inclusive Single High Transverse Momentum Pion Suppression in Au+Au Collisions at √s_{NN} = 200 GeV, <u>arXiv:0801.1665</u> :

Noted:

"These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties."

"...To Compute the Corresponding Theoretical Uncertainties"

- Collaborative efforts between theorists and experimentalists:
- TECH-QM:
 - Initiated 2008
 - Evolved towards JET Topical Collaboration
- JET
 - Sponsored workshops, meetings, schools
 - 57 publications to date

The Ultimate Lever-Arm

• The enormous reach provided by the LHC: $2^{CMS (* preliminary)} PbPb \sqrt{s_{NN}} = 2.76 \text{ TeV}}$

• New observables/discoveries at the LHC:

Our Evolving Understanding

Towards That End

• sPHENIX proposal, arXiv:1207.6378

New Tools Coming Online

A Control Parameter

- Large mass of c and b quarks \Rightarrow new scale.
- Key parameter: Heavy flavor heavy quark diffusion constant D suppressed, flows Closely related to n/s LQCD+data $\Rightarrow <<$ LOPT value 0-10% centra 1.6 van Hees et al. (II) 24 3/(2πT) Moore 8 — 0.25 * LOPT 12/(2πT) Teanev (III 16 2π DT 2⁴₽ 8 0.15 minimum bias 0.1 0.05 PHENIX 0

2

http://arxiv.org/abs/1109.5738

1.5

http://arxiv.org/abs/1005.1627

p_ [GeV/c]

Heavy Quark Suppression

Heavy Quark Physics

- Large mass \Rightarrow model by Langevin process
 - Diffusion coefficient D
 - Drag coefficient γ_{D} 1.2 $D(2\pi T)=$ 10% 1.0D meson B meson 25% 1.20-20% central 0-20% central 50% 0.8 **Current RHIC** 0.9 $R_{\rm AA}$ ≥^{₹0.6} statistical errors 0.6 0.4 0.3 0.2

- Fluctuation-Dissipation theorem \Rightarrow D = T/M_Q γ_D
 - Fundamental test of medium parameters in fundamental system
- Similarly to test $\hat{q} \sim M_{QP} \hat{e} \Rightarrow$ comparable precision needed in jet quenching program

 $D(2\pi T)=$

10%

25%

50%

An Aspirational Goal

- To establish if η /s is
 - Truly the lowest value ever studied in the laboratory
 - Consistent with corrections from quantum gravity
- This may indeed be possible:
 - Establish range of α_{s} (0.25-0.33?) from jets, heavy flavor, ...
 - Use (naïve) $\alpha_s = g_{YM}^2/4\pi$) in (Glauber) STAR Chg. v (2009) in result from HENIX v, WWND09 Myers, Paulos and Sinha R. 092301 (2007) Drescher et al. PRC76 024905 (2007) (http://arxiv.org/abs/0806.2156) STAR p. correlation (2009) $\lambda = g_{YM}^{2} N_{C} \rightarrow 4\pi \alpha_{S} N_{C}$ umber density correlation SQM08, Heinz WWND05 schke, PRL 99 172301 (2007) $\frac{\eta}{s} = \frac{1}{4\pi} \left\{ 1 + \frac{15\zeta(3)}{\lambda^{3/2}} + \frac{5}{16} \frac{\lambda^{1/2}}{N_c^2} + \cdots \right\}$ conjectured quantum limit PRI, 98 172301 (2007 , arXIv:0808.3710 388, arXiv:0812.2422 (2009) [hadron gas] $\Rightarrow \quad \frac{\eta}{s} \sim (1.54 - 1.73) \frac{1}{4\pi}$ 8 10 0 6 4π n/s

A Key Control Parameter

• Systematic investigation of all variations with \sqrt{s}

A Key Control Parameter

• Systematic investigation of all variations with \sqrt{s}

Implications

- RHIC is uniquely suited to study the transition from dense hadronic matter to formation of sQGP.
 - Provided by RHIC's broad dynamic range:
 - √s = 200 GeV → 7.7 GeV demonstrated
 ~5 GeV possible
- RHIC is ideally suited for exploration of the QCD phase diagram away from ~zero baryon chemical potential μ_B .

\sqrt{s} Varies a True Control Parameter: μ_B

- Emphasis in first part of this talk:
 - "Recreating conditions in the early universe" with µ_b/T <<1
 - A subset of "exploring the QCD phase diagram"

\sqrt{s} Varies a True Control Parameter: μ_B

- Emphasis in first part of this talk:
 - "Recreating conditions in the early universe" with µ_b/T <<1
 - A subset of "exploring the QCD phase diagram"

\sqrt{s} Varies a True Control Parameter: μ_{B}

Next Several Slides:

Returning to the further quantification of the QCD phase diagram.

Applying RHIC's Versatility – Round I

• RHIC – the most versatile collider ever operated.

		•		
RHIC Run	Year	Species	Energy	Ldt
Run-1	2000	Au+Au	130 GeV	1 µb-1
Run-2	2001-2	Au+Au	200 GeV	24 µb-1
		Au+Au	19 GeV	
		p+p	200 Gev	150 nb-1
Run-3	2002/3	d+Au	200 GeV	2.74 nb-1
		p+p	200 GeV	0.35 nb-1
Run-4	2003/4	Au+Au	200 GeV	241 µb-1
		Au+Au	62.4 GeV	9 μ b-1
Run-5	2005	Cu+Cu	200 GeV	3 nb-1
		Cu+Cu	62.4 GeV	0.19 nb-1
		Cu+Cu	22.4 GeV	2.7 µb-1
Run-6	2006	p+p	200 GeV	10.7 pb-1
		p+p	62.4 GeV	100 nb-1
Run-7	2007	Au+Au	200 GeV	813 µb-1
Run-8	2007/2008	d+Au	200 GeV	80 nb-1
		p+p	200 GeV	5.2 pb-1
		Au+Au	9.2 GeV	
Run-9	2009	p+p	200 GeV	16 pb-1
		p+p	500 GeV	14 pb-1
Run-10	2010	Au+Au	200 GeV	1.3 nb-1
		Au+Au	62.4 GeV	100 µb-1
		Au+Au	39 GeV	40 μb-1
		Au+Au	7.7 GeV	260 mb-1
Run-11	2011	p+p	500 GeV	27 pb-1
		Au+Au	200 GeV	915 μb-1
		Au+Au	27 GeV	5.2 µb-1
		Au+Au	19.6 GeV	13.7 M events
Run-12	2012	p+p	200 GeV	9.2 pb-1
		p+p	510 GeV	30 pb-1
		U+U	193 GeV	171 μb-1
		Cu+Au	200 GeV	4.96 nb-1

55

Fluctuation Observables for Critical Point ⁵⁶

- In particular, scaled kurtosis
- Current data provide only "hints"
- Required:
 - I0-20 x larger data set at low √s
 - data set at low \sqrt{s} Additional data point at $\sqrt{s}_{NN} = 15 \text{ GeV}_{6}$
 - ~ 3 years with demonstrated RHIC performance

Another Example

- J. Kapusta, QM12:
 - Studies fluctuations in thermal conductivity
 - Calculates effect on proton correlation function for various "fly-bys" near the critical point

Another Example

New STAR data suggest change in strange quark dynamics between 19.6 GeV and 11.5:

 Is this a "sharp" onset?

- Or a gradual evolution with √s?
- Or phase space?

Unique Collider Capabilities

 Of course: ability to reach high √s:

▶ $\sqrt{s=7.7}$ GeV \Rightarrow E_{FIX} = 31 GeV

▶ $\sqrt{s} = 200 \text{ GeV} \Rightarrow \text{E}_{\text{FIX}} = 21 \text{ TeV}$

• At least as important when scanning energies:

- Example: "Interesting" range on RHIC E-scan: $\Box \sqrt{s} = 5 \text{ GeV} \Rightarrow \theta_{CM} = 23.5^{\circ}$ $\Box \sqrt{s} = 15 \text{ GeV} \Rightarrow \theta_{CM} = 7.7^{\circ}$
- Much harder to control systematics at 10-20% level when acceptance changes by factors of 3...

59

Unique RHIC Capabilities

Uranium+Uranium collisions

- Made available by new (2012) upgrade (Electron Beam Ion Source)
- Use large intrinsic deformation to
 - Dramatically extend distribution of initial-state eccentricities
 - Create elliptic flow even in the most central events
 - Critical control measurement for chiral magnetic effect

Increased energy density in subset of central events

First run: 2012, first results presented at QM12

Asymmetric ion collisions (e.g., Cu+Au)

 Made available by new (2012) upgrade (Electron Beam Ion Source)

Use to

- □ Directly excite odd v_n harmonics
- □ Directly test
 "local energy density"
 effects in J/Ψ absorption
- Reduce effect of "cold" corona present in symmetric collisions
- Results available just
 6 weeks after first run in 2012

Unique RHIC Capabilities

- Polarization ! (see talk by R. Holt)
- As but one example:
 - * "Single Spin Asymmetry Scaling in the Forward Rapidity Region at RHIC", Z. Kang and F. Yuan, <u>http://arxiv.org/abs/1106.1375</u>
 - Polarized p+A collisions sensitive to gluon saturation scales:

 Fascinating tie between "spin" physics, saturation physics and initial state in A+A

An Extended Summary

National and International Recognition

64

National and International Recognition

65

- Saskia Mioduszewski, 2003 Presidential Early Career Award
- •Sean Gavin, 2004 Presidential Early Career Award
- •Zhangbu Xu, 2004 Presidential Early Career Award
- •Yuri Kovchegov, co-recipient 2006 Raymond and Beverly Sackler Prize
- •Michael Harrison and Satoshi Ozaki, 2007 IEEE Particle Accelerator S&T Award
- •Mickey Chiu, 2007 Presidential Early Career Award
- •Paul Sorensen, 2008 George E. Valley Jr. Prize
- Ivan Vitev, 2008 Presidential Early Career Award
- •Saskia Mioduszewski, 2009 Maria Goeppert Mayer Award
- •Satoshi Ozaki, 2009 Robert R. Wilson Prize
- •Yasuyuki Akiba, 2011 Nishina Prize

The Big Picture

The "Quark Matter" Community

Quark Matter 2012

The XXIII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions August 13-18, 2012, Washington D.C.

Community Demographics

Others 21%

Norway

3% India

4% China

• Others: Brazil, Canada, Chile, Czech Republic, Denmark, Finland, Greece, Hungary, Ireland, Israel, Korea, Mexico, Netherlands, Portugal, Romania, Russia, Slovakia, South Africa, Spain, Sweden, Ukraine, United Kingdom

Total: 32 countries

USA

26%

Recent Town Meeting

"2012 D.C. Town Meeting for Heavy Ions"

- Saturday afternoon
- in August
- in D.C.
- following
 5.5. day
 conference.
- 250+ participants!

(Worldwide) Community Observations

- CERN Council
 European Strategy Group
 June 2012 Town Meeting:
 - "The complementarity of LHC and RHIC is an essential resource in efforts to quantify properties of the Quark Gluon Plasma."
- Summary talk, J. Schukraft, Hard Probes 2012

70

- National Academy Decadal Survey for Nuclear Physics (2012):
 - Finding: By capitalizing on strategic investments, including the ongoing upgrade of the continuous electron beam accelerator facility (CEBAF) at the Thomas Jefferson Accelerator Facility and the recently completed upgrade of the relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory, as well as other upgrades to the research infrastructure, nuclear physicists will confront new opportunities to make fundamental discoveries and lay the groundwork for new applications.

Observations

- The extraordinary success of RHIC in its first decade of operations was possible because it is a *dedicated* facility.
- The extraordinary success of the heavy ion program at the LHC is in part due to the successful import of techniques developed at RHIC.
- With the luminosity upgrade, EBIS, and detector upgrades, RHIC is perfectly positioned to quantify QGP properties and to explore the QCD phase diagram

The Program Going Forward

•Spin

Saturation physics

• A rich combination of precision and discovery:

72
Back-Up Material

Science Questions (2007 LRP)

- What are the phases of strongly interacting matter, and what roles do they play in the cosmos?
- What does QCD predict for the properties of strongly interacting matter?
- What governs the transition of quarks and gluons into pions and nucleons?
- What is the role of gluons and gluon self-interactions in nucleons and nuclei?
- What determines the key features of QCD, and what is their relation to the nature of gravity and spacetime?

Science Questions (Decadal Survey)

- Does the QGP have a particulate description at any length scale? At any temperature scale? Is the somewhat hotter QGP produced and studied at the LHC also liquid-like, as at RHIC, or does it start to show signs of behaving like a weakly-coupled, more conventional, plasma?
- Experiments at RHIC indicate that the quark-gluon plasma liquid forms and reaches local equilibrium remarkably quickly, in about the time it takes light to travel across one proton. How does this happen? How does the system go from the strong gluon fields hypothesized to occur inside large nuclei to the flowing QGP liquid? Does this also happen in heavy ion collisions at the LHC?
- Does the quark-gluon plasma liquid produced at RHIC dissolve even the very small particles formed from heavy quarks and their anti-particles? Does the quark-gluon plasma prevent a heavy quark and antiquark from binding to each other only when they are farther apart than some "screening length"? How close together do they have to be for them to feel the same attraction that they would feel if they were in vacuum?
- How do the energetic particles produced in the earliest stages of a heavy ion collision interact with and deform the fluid? Are very high energy quarks or very heavy "bottom quarks" weakly coupled to the fluid or do they rapidly become part of the soup?
- Experiments at RHIC and lattice QCD calculations both indicate that as QGP cools, the reassembly of quarks and gluons into hadrons takes place over a broad temperature range. But, some theoretical calculations indicate that quark-gluon plasma in which there is a greater excess of quarks over antiquarks, as produced in lower energy collisions, should cool through a true phase transition, much like thecondensation of water droplets from cooling vapor. If so, there is a sharp phase transition line in the phase diagram of QCD that must end at a "critical point". Is there such a critical point in the experimentally accessible domain?

Science Questions (RHIC White Paper)⁷⁶

- What techniques can be used to pump and probe condensed strongly interacting matter that lives for only ~10⁻²³ seconds after a collision?
- What are the unique emergent phenomena for matter governed by QCD?
- How did these emergent phenomena influence the evolution of the early universe?
- What roles do quantum fluctuations play in the evolution of the "mini-universe" created in each RHIC collision?
- Are there lessons to be learned from QCD matter that can inform our understanding of other non-Abelian matter (e.g., that at the ElectroWeak phase transition in the infant universe) that is more difficult or not possible to subject to laboratory investigation?

Science Questions (RHIC White Paper) 77

- How does strongly coupled liquid behavior arise from an asymptotically free theory?
- How close does η /s come to the AdS/CFT bound, and how does it vary as one goes from temperatures below to well above the deconfinement transition?
- What are the values of other transport coefficients in the QGP as a function of temperature, and how do they compare to expectations from lattice QCD?
- How does the QGP matter respond to the absorption of energy from traversing partons? Can we learn about the transition from weak to strong coupling by studying jet quenching and QGP response as a function of jet and collision energy?
- How does the matter thermalize so rapidly, and how is the rapid thermalization influenced by details of the gluon-dominated initial state in the collisions?
- Do heavy (c and b) quarks participate fully in the thermalization, the collective flow and the energy loss phenomena established so far for lighter quarks?
- How is the color force that binds quarks together screened, over distances comparable to hadron sizes, by the presence of colored QGP matter?

From June 2012 Town Meeting of European Strategy Group

78

Major recommendations

- 1. The top priority for future quark matter research in Europe is the full exploitation of the physics potential of colliding heavy ions in the LHC.
- 2. At lower center of mass energies where the highest baryon densities are reached, advances in accelerator and detector technologies provide opportunities for a new generation of precision measurements that address central questions about the QCD phase diagram.
- 3. The complementarity of LHC and RHIC is an essential resource in efforts to quantify properties of the Quark-Gluon Plasma.
- 4. Dedicated investments in theoretical research are needed to fully exploit the opportunities arising from the upcoming precision era of nuclear research at collider and fixed target energies.

Long Range Plan Recommendations

RECOMMENDATION IV

The experiments at the Relativistic Heavy Ion Collider have discovered a new state of matter at extreme temperature and density—a quark-gluon plasma that exhibits unexpected, almost perfect liquid dynamical behavior. We recommend implementation of the RHIC II luminosity upgrade, together with detector improvements, to determine the properties of this new state of matter.

The major discoveries in the first five years at RHIC must be followed by a broad, quantitative study of the fundamental properties of the quark-gluon plasma. This can be accomplished through a 10-fold increase in collision rate, detector upgrades, and advances in theory. The RHIC II luminosity upgrade, using beam cooling, enables measurements using uniquely sensitive probes of the plasma such as energetic jets and rare bound states of heavy quarks. The detector upgrades make important new types of measurements possible while extending significantly the physics reach of the experiments. Achieving a quantitative understanding of the quark-gluon plasma also requires new investments in modeling of heavyion collisions, in analytic approaches, and in large-scale computing. support. Detector upgrades at RHIC, which are part of Recommendation IV, will proceed over several years, and the accelerator modifications needed to implement beam cooling, which will significantly increase the RHIC luminosity, will be carried out between 2012 and 2015. Following this course, nuclear science in the United States will continue to have world-leading facilities into the future.

phenomenological modeling, and new initiatives. Strategic investments in LHC detector instrumentation and computing, which leverage the capabilities of the existing LHC detectors, are required for significant and timely U.S. participation in the LHC heavy-ion program. Collectively, these investments will result in a dramatic advance in our understanding through quantitative comparison of theory and experiment. The synergies of RHIC and the LHC will lead to a much deeper understanding of the properties and dynamics of dense QCD matter.

To Be Fair...

Order of QCD transition sensitive to m_s/m_{u.d}

□ E. Laermann and O. Philipsen, hep-ph0303042

The Paradigm Shift - Before

• Recall Stefan-Boltzmann $\Rightarrow \varepsilon = \frac{\pi^2}{30}T^4 \sim \frac{1}{3}T^4$ per d.o.f.

The Paradigm Shift – After

• Recall Stefan-Boltzmann $\rightarrow \epsilon = \frac{\pi^2}{30}T^4 \sim \frac{1}{3}T^4$ per d.o.f.

Beyond 't Hooft Limit ? (1)

- A foolish consistency is the hobgoblin of little minds...
- Hydro direct photon results (Liu, Hirano, Werner, Zhu; QM09)

Beyond 't Hooft Limit ? (2)

 Use this range for α_S ~0.25-0.33 in result from Myers, Paulos and Sinha (<u>http://arxiv.org/abs/0806.2156</u>)

$$\frac{\eta}{s} = \frac{1}{4\pi} \left\{ 1 + \frac{15\zeta(3)}{\lambda^{3/2}} + \frac{5}{16} \frac{\lambda^{1/2}}{N_c^2} + \cdots \right\} \implies \frac{\eta}{s} \sim (1.54 - 1.73) \frac{1}{4\pi}$$

$$\rightarrow \text{(Using most naïve } \alpha_s = g_{YM}^2/4\pi \text{)}$$

$$\lambda = g_{YM}^2 N_c$$

$$A = g_{YM}^2 N_c$$

$$A = g_{YM}^2 N_c$$

$$Break = this to compilation of η/s estimates:
$$Break = table = tab$$$$

Beyond 't Hooft Limit ? (3)

Consistency check: Use same range α_S ~0.25-0.33
 In 'ancient' result from

Gubser, Klebanov and Tseytlin (http://arxiv.org/abs/hep-th/9805156)

