
StreamStor Real-Time Storage
Controller

Installation and
User’s Guide

2222

Copyright and Trademarks

The information in this document is subject to change without notice.

This document contains proprietary information that is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced, or
translated to another language without the prior written consent of Conduant
Corporation.

Printed in the United States.

© 2002 Conduant Corporation. All rights reserved.

StreamStor is a trademark of Conduant Corporation.

All other trademarks are the property of their respective owners.

Publication date: November 15, 2002

3333

Table of Contents

Copyright and Trademarks .. 2

License Agreement And Limited Warranty....................... 6

About This Manual .. 8

Introduction.. 9
About the StreamStor System...10
What you need to get started ..11
Software Programming Choices...11
Unpacking...11

Controller Board.. 11
Disk Drives... 12

Installation .. 13
Components..14
Planning Your Installation..15
Hardware Installation ...16

Controller Card.. 16
Drive Configuration... 18
Installing the Drives... 19
Connecting Interface and Power Cables ... 19
Drive auto configuration.. 20

Installing the Software..20

Software Development Kit (SDK) .. 22
Introduction ..23
Software Components...23

Device Driver... 23
Support files ... 23
Windows Uninstall ... 24
Windows Configuration/Test Utility... 24
Windows Fetch Utility.. 25
Windows Library.. 28
Linux Library ... 28
API Functions .. 28
Data Structures .. 29

Function Reference .. 30
XLRApiVersion... 31
XLRAppend .. 32
XLRCardReset.. 33
XLRClose ... 34
XLRDeleteAppend.. 35
XLRDeviceFind.. 36

4444

XLRGetBaseAddr ... 37
XLRGetBaseRange... 38
XLRGetDeviceInfo ... 39
XLRGetDeviceStatus .. 40
XLRGetDirectory ... 41
XLRGetDriveInfo ... 42
XLRGetErrorMessage.. 43
XLRGetLastError... 44
XLRGetLength.. 45
XLRGetLengthHigh.. 46
XLRGetLengthLowHigh... 47
XLRGetLengthLow... 48
XLRGetLengthPages.. 49
XLRGetPlayLength .. 50
XLRGetSystemAddr.. 51
XLRGetVersion .. 52
XLRGetWindowAddr.. 53
XLROpen.. 54
XLRPlay ... 55
XLRPlayback.. 56
XLRRead .. 57
XLRReadData .. 58
XLRReadFifo.. 59
XLRReadImmed ... 60
XLRReadStatus... 61
XLRRecord... 62
XLRRecoverData ... 63
XLRReset.. 64
XLRSetFifoMode.. 65
XLRSetFPDPMode .. 66
XLRSetMode .. 68
XLRSetPortClock ... 70
XLRSetReadLimit ... 71
XLRStop ... 72
XLRTruncate .. 73
XLRWrite.. 74
XLRWriteData.. 75
Structure S_DEVINFO... 76
Structure S_DEVSTATUS .. 77
Structure S_DIR ... 79
Structure S_DRIVEINFO... 80
Structure S_READDESC.. 81
Structure S_XLRSWREV .. 82

PCI Integration… .. 84
PCI Integration ...85

Initialization and Setup .. 85
PCI Bus Interfacing ... 85
Multi-Card Operation .. 86

Operation… .. 88
Operation ..89

Data Recording.. 89
Recording Data ... 89
Data Wrap... 90

5555

Ending the Recording ... 90
Data Read .. 90

Read Setup .. 90
Read Positioning ... 91
Reading Data... 91

Disk FIFO… ... 92
Disk FIFO...93

Setting FIFO mode... 93
Recording to FIFO... 93
Ending FIFO Record ... 93
Reading FIFO data .. 94

External Port… .. 96
External Port ...97
FPDP...98

Overview .. 98
Interface Electronics .. 98
Data Formats ... 98
PIO Signals .. 99
Connector Position .. 99
Interface Functions .. 99
PSTROBE/PSTROBE* and STROB Signals .. 100
Operating Frequency Range .. 101

If You Have Problems….. 102

support@conduant.com ... 102

www.conduant.com .. 102

Help Us Help You ..103
Contacting Technical Support ..104

Appendix A – Error Codes.. 106

A B O U T T H I S M A N U A L

6666

License Agreement And Limited Warranty

IMPORTANT. CAREFULLY READ THE TERMS AND CONDITIONS OF THIS AGREEMENT BEFORE
USING THE PRODUCT. By installing or otherwise using the StreamStor Product, you agree to be bound by
the terms of this Agreement. If you do not agree to the terms of this Agreement, do not install or use the
StreamStor Product and return it to Conduant Corporation.

GRANT OF LICENSE. In consideration for your purchase of the StreamStor Product, Conduant Corporation
hereby grants you a limited, non-exclusive, revocable license to use the software and firmware which controls
the StreamStor Product (hereinafter the "Software") solely as part of and in connection with your use of the
StreamStor Product. If you are authorized to resell the StreamStor Product, Conduant Corporation hereby
grants you a limited non-exclusive license to transfer the Software only in conjunction with a sale or transfer
by you of the StreamStor Product controlled by the Software, provided you retain no copies of the Software
and the recipient agrees to be bound by the terms of this Agreement and you comply with the RESALE
provision herein.

NO REVERSE ENGINEERING. You may not cause or permit, and must take all appropriate and reasonable
steps necessary to prevent, the reverse engineering, decompilation, reverse assembly, modification,
reconfiguration or creation of derivative works of the Software, in whole or in part.

OWNERSHIP. The Software is a proprietary product of Conduant Corporation which retains all title, rights
and interest in and to the Software, including, but not limited to, all copyrights, trademarks, trade secrets,
know-how and other proprietary information included or embodied in the Software. The Software is protected
by national copyright laws and international copyright treaties.

TERM. This Agreement is effective from the date of receipt of the StreamStor Product and the Software. This
Agreement will terminate automatically at any time, without prior notice to you, if you fail to comply with any
of the provisions hereunder. Upon termination of this Agreement for any reason, you must return the
StreamStor Product and Software in your possession or control to Conduant Corporation.

LIMITED WARRANTY. This Limited Warranty is void if failure of the StreamStor Product or the Software is
due to accident, abuse or misuse.

Hardware: Conduant's terms of warranty on all manufactured products is one year from the date of shipment
from our offices. After the warranty period, product support and repairs are available on a fee paid basis.
Warranty on all third party materials sold through Conduant, such as chassis, disk drives, PCs, bus extenders,
and drive carriers, is passed through with the original manufacturer's warranty. Conduant will provide no
charge service for 90 days to replace or handle repair returns on third party materials. Any charges imposed by
the original manufacturer will be passed through to the customer. After 90 days, Conduant will handle returns
on third party material on a time and materials basis.

Software: The warranty on all software products is 90 days from the date of shipment from Conduant’s
offices. After 90 days, Conduant will provide product support and upgrades on a fee paid basis. Warranties on
all third party software are passed through with the original manufacturer's warranty. Conduant will provide no
charge service for 90 days to replace or handle repair returns on third party software. Any charges imposed by
the manufacturer will be passed through to the customer.

 7777

DISCLAIMER OF WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CONDUANT CORPORATION DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT,
WITH REGARD TO THE STREAMSTOR PRODUCT AND THE SOFTWARE.

SOLE REMEDIES. If the StreamStor Product or the Software do not meet Conduant Corporation’s Limited
Warranty and you return the StreamStor Product and the Software to Conduant Corporation, Conduant
Corporation's entire liability and your exclusive remedy shall be at Conduant Corporation 's option, either (a)
return of the price paid, if any, or (b) repair or replacement of the StreamStor Product or the Software. Any
replacement Product or Software will be warranted for the remainder of the original warranty period.

LIMITATION OF LIABILITIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
IN NO EVENT SHALL CONDUANT CORPORATION BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF
OR. INABILITY TO USE THE STREAMSTOR PRODUCT AND THE SOFTWARE. IN ANY CASE,
CONDUANT CORPORATION' S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
AGREEMENT SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR THE
STREAMSTOR PRODUCT AND THE SOFTWARE. BECAUSE SOME STATES AND JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.

RESALE. If you are authorized to resell the StreamStor Product, you must distribute the StreamStor Product
only in conjunction with and as part of your product that is designed, developed and tested to operate with and
add significant functionality to the StreamStor Product; you may not permit further distribution or transfer of
the StreamStor Product by your end-user customer; you must agree to indemnify, hold harmless and defend
Conduant Corporation from and against any claims or lawsuits, including attorneys' fees, that arise or result
from the use or distribution of your product; and you may not use Conduant Corporation's name, logos or
trademarks to market your product without the prior written consent of Conduant Corporation.

ENTIRE AGREEMENT; SEVERABILITY. This Agreement constitutes the complete and exclusive
agreement between you and Conduant Corporation with respect to the subject matter hereof and supersedes all
prior written or oral agreements, understandings or communications. If any provision of this Agreement is
deemed invalid under any applicable law, it shall be deemed modified or omitted to the extent necessary to
comply with such law and the remainder of this Agreement shall remain in full force and effect.

GOVERNING LAW. This Agreement is governed by the laws of the State of Colorado, without giving effect
to the choice of law provisions therein. By accepting this Agreement, you hereby consent to the exclusive
jurisdiction of the state and federal courts sitting in the State of Colorado.

A B O U T T H I S M A N U A L

8888

About This Manual

This manual is intended serve the following purposes:

∗ to provide an overview of StreamStor Real-time Storage

∗ to act as a guide for hardware installation

∗ to act as a reference for the programmer

It is suggested that you periodically check the Conduant web site for the most recent
software updates, application notes, and technical bulletins.

If you are unable to locate the information you need, please feel free to contact us by
e-mail or phone.

9999

Introduction

Chapter

C H A P T E R 1 : I N T R O D U C T I O N

 10101010

About the StreamStor System
Thank you for purchasing a Conduant StreamStor Real-Time Storage System. Your
StreamStor system is a disk-based, real-time recording system for PCI bus
computers. The StreamStor system consists of controller card that plugs into the
PCI bus, high performance disk drives, device drivers, software development tools,
and additional utility software.

The PCI bus is a high performance I/O bus designed for attaching peripheral
devices to computer systems. It is found in computing systems from many different
manufacturers and is supported by nearly all major operating systems. By utilizing
the PCI bus instead of a proprietary bus interface, StreamStor provides an open
platform recording system. PCI data acquisition cards (digital oscilloscopes, frame
grabbers, telemetry interfaces, etc) are available from many manufacturers to collect
data and record it to system memory in real time (as it is collected). StreamStor
provides a large capacity and cost effective alternative to system memory for these
applications.

The StreamStor Storage System is able to receive data over the PCI bus directly from
the data acquisition device at very high average (sustained) data rates. Virtually all of
the available PCI cards that can record data to system memory are compatible with
StreamStor. Only minor software modifications are generally required to redirect
data to the StreamStor PCI card. This capability is often in the software provided by
the manufacturers of data acquisition devices. Conduant maintains a list of tested
configurations, please contact technical support for more information.

StreamStor was specifically designed to record sequential data without interruption at
very high data rates. This is in contrast to traditional storage systems that are
designed for data processing purposes and cannot sustain these high data rates.
Unlike typical computer disk storage solutions that are designed for optimum
performance doing random data reads and writes, StreamStor has been designed for
optimum performance in sequential read and write operations. The StreamStor
system has also been designed to operate without host computer intervention. This
eliminates any bottlenecks or interruptions in the data stream due to heavy computer
loads or delays.

The device drivers and API (Application Programming Interface) provide for a
smooth integration of StreamStor with the data acquisition device and/or analysis
software. Periodically check the Conduant web site for new releases of the software
components. Please feel free to offer suggestions and request new features.

C H A P T E R 1 : I N T R O D U C T I O N

 11111111

What you need to get started
To set up and use the StreamStor system, you will need the following:

∗ StreamStor controller card

∗ Disk drives

∗ Disk drive mounting brackets

∗ Disk drive interface cables

∗ StreamStor Software Development Kit

∗ A computer and chassis with sufficient space for mounting all disk drives.

∗ An empty full length PCI slot or 3U CompactPCI slot (depending on model).

∗ This manual

Software Programming Choices
The StreamStor Software Development Kit (SDK) includes a Windows DLL library,
a Linux function library and drivers providing control and data retrieval functions
necessary for using the StreamStor system. Application software can be developed
in any environment capable of utilizing these library functions. This includes the
various Windows programming languages such as Visual C++ and Visual Basic as
well as graphical programming environments such as LabVIEW.

Unpacking
Carefully inspect all shipping packages for any sign of damage. In particular, look for
wrinkled or bent corners, holes, or other signs of bad handling or abuse. If you
notice any damage to the packaging, immediately open the boxes and inspect the
contents for damage. Pay close attention to the components near the area where the
packing material was damaged. Report any damage to the carrier and Conduant
immediately.

Controller Board
The StreamStor controller board is shipped in a specially designed antistatic box to
prevent electrostatic damage to the board. To avoid damage in handling the board,
take the following precautions:

C H A P T E R 1 : I N T R O D U C T I O N

 12121212

∗ Ground yourself with a grounding strap or grasp a conductive, grounded object
to dissipate any static charge while handling the board.

∗ Always store the board in its antistatic box when not installed in a computer
system.

∗ Inspect the board carefully before installing in the computer. Notify Conduant
immediately if the board appears damaged. Do not install a damaged board into
your computer.

∗ Never touch any exposed connector pins or component leads.

∗ Avoid bending or twisting the board.

Disk Drives
Hard disk drives such as those that may have been included with your system are
very susceptible to excess shock and careless handling, it is recommended that you
leave the drives in their packaging until you are ready to install them in the chassis.
Please observe the following handling precautions:

∗ Allow the hard drive to reach room temperature BEFORE installing it. This
may take several hours depending on shipping conditions.

∗ Handle the hard drive by the sides; DO NOT touch the printed circuit board.

∗ Do not drop, jar or bump the drive. Even setting the drive on a hard surface
too roughly can damage the mechanical components inside the drive.

∗ Never disconnect/connect drive cables while power is on.

∗ Observe anti-static handling guidelines as outlined above for circuit board
handling.

13131313

Installation

Chapter

C H A P T E R 2 : I N S T A L L A T I O N

 14141414

Components

StreamStor systems generally consist of the following components:

• StreamStor Disk Controller Card (PCI-408, PCI-816, PCI-816XF, PCI-
816XF2 or CPCI-408)

• In-System tested disk drives

• Disk Drive Mounting Hardware

• Disk Drive Cables

• User Manual

• Installation Software (CDROM)

���� CAUTION: Please read the entire installation section before starting to install the
StreamStor system. This manual assumes that the user is
knowledgeable and comfortable with basic computer cabling, power
connections, inserting cards into the PCI bus, and use of the
computer operating system. If you are unsure as to how to proceed,
please contact Conduant.

C H A P T E R 2 : I N S T A L L A T I O N

 15151515

Planning Your Installation
The StreamStor controller board uses anywhere from 2 to 8 flat cables (depending
on the configuration) to connect the controller to up to 16 disk drives. Not all
computer chassis layouts easily facilitate this type of cabling. The configuration and
layout of the computer chassis will greatly affect the ease of installing the StreamStor
system. Contact Conduant if you need help in choosing or designing an appropriate
chassis. Extension chassis systems are also available to avoid impacting an existing
computer system.

The 408 and 816 models can have one or two disk drives per cable. Each interface
cable must have one MASTER drive (see Drive Configuration below). If there is a
second drive on the same cable it must be configured as a SLAVE drive. If there is
only a single drive on the interface cable, attach the drive to the end connector. Prior
to mounting anything in the chassis, lay out the disk drives and the StreamStor card
on a flat, static free surface and model the routing and placement of the cables. Pay
close attention to the connector keys because these may define which way the disk
drives must be mounted. Avoid pinching or routing over sharp edges to prevent
cable damage.

The orientation of the disk drives can greatly affect the ease of cable routing. In
horizontal orientations, mounting the drive with the board facing down prevents
debris from inadvertently damaging or shorting the electronics and is the preferred
orientation. Generally, all drives should be mounted in the same orientation to avoid
twists in the cables.

���� CAUTION: When removing cables from the StreamStor board, ALWAYS use the
ejector tabs to gently free the cables from the board. NEVER pull on
the cables to free them from the board.

The cables supplied with your system are the maximum recommended length;
longer cables may cause intermittent data loss and should be avoided. Removable
drive carriers add several connections to the interface bus that can also cause
intermittent data problems. Several removable drive carriers are known to work with
StreamStor so please contact Conduant if you have special requirements for them.

The CompactPCI card (CPCI-408) can be configured to allow the drive cables to
exit from either side of the card. To route the cable to the side opposite of the
connector, you must remove the front faceplate. The cables can then be routed
through the slot between the front of the card and the faceplate. Be careful when
replacing the faceplate to avoid pinching the cables.

C H A P T E R 2 : I N S T A L L A T I O N

 16161616

Hardware Installation
The StreamStor Storage System comes in 3 models: 408, 816, and 816XF. The first
digit refers to the number of drive buses available on the controller card and the next
two digits indicate the number of disk drives used. The following table shows the
relationship of these models.

Model Drive Busses Drive Cables Drives
408 4 4 8
816 8 8 16
816XF 8 8 16

All StreamStor models are upgradeable for increased storage capacity and high
sustained data rates. Please contact Conduant for more information on upgrades.

Controller Card
The PCI versions of the StreamStor controller are full-length PCI cards that meet
the PCI 2.1 specification (figure 1). Installation requires a PCI slot that can
accommodate a full size card and has a card support guide. Clearance is also
required for the drive cables exiting from the controller card. The CompactPCI
versions of the StreamStor controller are standard 3U size cards that can be installed
in any available CompactPCI slot. To install into a 6U slot you will need an adapter
board. The drive cables can be routed to either side of the CompactPCI cards.

Figure 1 - StreamStor PCI Controller Card

C H A P T E R 2 : I N S T A L L A T I O N

 17171717

Drive Connector 0
Drive Connector 1

Drive Connector 2
Drive Connector 3

Figure 2 - StreamStor CPCI Card

Drive Number Assignments
Connector Master Slave

0 0 1
1 2 3
2 4 5
3 6 7
4 8 9
5 10 11
6 12 13
7 14 15
8 16 17

The following are general instructions for installing your StreamStor controller. You
should also consult your computer user manual or technical reference for more
specific instructions and warnings.

���� CAUTION: Over flexing the circuit board will damage the controller.

���� NOTE: You may find it easier to attach the drive interface cables BEFORE
installing the controller board. Be careful to prevent damage to any
components on the back side of the circuit board if you lay the card
down.

1. Turn off and unplug your computer.

2. Remove the top cover or access port to the I/O bus.

3. Remove the expansion slot cover on the back panel of the computer for the slot
into which you intend to install the StreamStor controller.

4. Insert the StreamStor controller board into the chosen PCI slot. Gently rock the
board to ease it into place. It may be a tight fit but do not force the board into

C H A P T E R 2 : I N S T A L L A T I O N

 18181818

place. Make sure that the card support bracket lines up correctly with the
support provided in the computer chassis.

5. Screw the mounting bracket to the back panel of the computer chassis.

6. Proceed to drive installation and cabling.

Drive Configuration
StreamStor controllers can be configured with a second disk drive attached to each
drive cable. Of those two disk drives, one must be configured as a MASTER and
the other as a SLAVE. Configuring a drive as a MASTER or SLAVE is
accomplished through the adjustment of jumpers on the disk drives. The exact
jumper settings for MASTER and SLAVE modes may vary from one disk drive
manufacturer to another. When adjusting jumpers, it is recommended that the user
look at the jumper guide that is usually printed on the drive. If there is no such
guide, the user should refer to other shipped material, the web site of the disk drive
manufacturer, or contact Conduant for assistance.

The following illustrations show the jumper configurations for the Quantum Fireball
EL/EX and IBM Deskstar hard drives. Please consult the documentation included
with your system for jumper settings for other drive types.

Jumper

Quantum Fireball EL/EX

C H A P T E R 2 : I N S T A L L A T I O N

 19191919

Jumper

IBM Deskstar

Drives shipped from Conduant will be pre-configured with the correct number of
MASTER and SLAVE drives for the shipped configuration. The drives are marked
with stickers labeled MASTER or SLAVE.

In 408, 816 and 816XF configurations, the StreamStor controller should be attached
to a cable END. The drives may attach to the remaining connectors in any order.
Be careful to match the connector keys when connecting the drive to the cable and
never force the connection, as this could damage the disk drive.

Installing the Drives
The method used to mount the disk drives is left to you. However, the disk drives
provided by Conduant require adapters for mounting these standard 3-1/2” disk
drives into standard 5-1/4” slots. If you are mounting the drives into 3-1/2” slots
these brackets are not necessary. Be sure to follow the handling precautions
described above when installing the hard drives.

Connecting Interface and Power Cables
Depending on the orientation you chose for the disk drives, it may be easier to first
attach the drive power cables or the drive interface cables. You should first attach
whichever connectors are furthest from your reach. Be careful to support the
StreamStor PCI card when plugging in the drive cables to avoid over flexing the
circuit board. Also be careful to correctly orient the connector since they are all
keyed to prevent incorrect insertion.

C H A P T E R 2 : I N S T A L L A T I O N

 20202020

���� CAUTION: The signal and power connectors are keyed to prevent incorrect
insertion. Exerting excessive force with the connectors improperly
aligned can cause damage. Even with the correct alignment, care
should be taken to not apply excessive force or torque.

Carefully connect and route the interface cables from the StreamStor controller to
the disk drives. Remember that either all cables must have a MASTER drive only or
both a MASTER and SLAVE drive. There is no requirement to attach the cables to
a particular connector on the controller board for a new installation but they must be
used in order starting at connector zero.

Drive auto configuration
The StreamStor controller boards support auto configuration to the number of
drives installed. The 408 boards (PCI-408 and CPCI-408) can support 2,3,4,6 and 8
drive configurations. The 816, 816XF and 816XF2 boards (PCI-816, PCI-816XF
and PCI-816XF2) can support 2,3,4,5,6,7,8,10,12,14 and 16 drive configurations. If
any drive cable has a slave drive than all cables must have a slave drive. Connectors
on the controller board should be used in order without gaps starting from
connector zero (0). You should always check that all drives are being recognized by
the system using the XLRGetDeviceInfo function call. The sscfg.exe program
also reports this information after initialization.

Installing the Software
Your StreamStor system was shipped with the Software Development Kit on CD-
ROM. Please power up your computer and, when ready, run the setup.exe program
on the CD-ROM to start the installation process on Windows systems.

C H A P T E R 2 : I N S T A L L A T I O N

 21212121

Plug and play operating systems such as Windows 98 and Windows 2000 will detect
the installation of the StreamStor board and attempt to configure the boards using
the hardware plug and play wizard program. The required installation information
file for plug and play installation is included on the CD-ROM. Make sure the plug
and play wizard includes the CD-ROM drive in its search so that the StreamStor
drivers will be properly installed. You should not cancel the plug and play wizard
since this can create hardware conflicts in the system when using the StreamStor
controller. Note that the setup.exe program must still be executed to install the
StreamStor SDK onto your system.

Linux installation instructions are available in the linux sub-directory on the CD-
ROM.

The software installation procedure will install the device drivers, library files,
example programs and all other components of the SDK onto your system.

The StreamStor SDK does not include software interfaces or drivers used for the
control of data acquisition cards made by other manufacturers. However, it does
include some sample programs to help in your software development efforts. Other
drivers and examples may be available depending on your choice of data acquisition
hardware. Contact Conduant support for more information.

Always review the readme.html file included with the SDK for the latest
information not included in this manual. Also check the Conduant web site
periodically for software updates. Software updates may include new features and
capabilities as well as important fixes and improved hardware support. Users who do
not have access to the Internet can request updates by calling Conduant Technical
Support.

22222222

Software Development Kit (SDK)

Chapter

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T

 23232323

Introduction
One of the most powerful features of StreamStor is that it is an open platform
device allowing other PCI devices complete access to record or read data from the
disk storage. Conduant makes it easy for system designers to use StreamStor by
providing an Application Programming Interface (API) library. This library provides
the control software for StreamStor in the form of DLLs (Dynamic Link Libraries)
for Windows and an archive library for Linux that can be accessed by user
application software.

The following pages define the functions provided by the library for controlling,
recording and retrieving data from the StreamStor system. It is suggested that you
periodically check the Conduant Web Site for updates. If you do not have Internet
access, feel free to call and ask for technical support. We’ll be happy to send you the
latest updates.

Software Components
The SDK software components include operating system device drivers, support
files, programming libraries and utility programs.

Device Driver
The StreamStor SDK provides device driver support for the Windows NT 4.0,
Windows 2000, Windows XP and Linux operating systems. The drivers are installed
automatically by the supplied setup program. The Windows NT/2000 device driver
is named windrvr.sys. The Linux device driver is installed as a kernel module.
Special instructions for Linux driver installation are included in the Linux sub-
directory on the CD-ROM.

Support files
The StreamStor support files (ssatap.bib, ssatac.bib, sspci.bib,
ssatap3.bib and sspxf.bib) located in the installation directory are
required for proper initialization of the StreamStor system after power-on or reset.
On Windows computers, the location of these files is defined by a registry entry
created by the installation program that specifies the installation directory where
these files are installed by default. This registry setting may be changed if these files
are moved to an alternate directory. The registry path is:

“HKEY_LOCAL_MACHINE\SOFTWARE\Conduant\StreamStor SDK\BibPath”

In Linux, the environment variable STREAMSTOR_BIB_PATH is used to specify
this directory path.

The Windows DLL for the StreamStor API is named xlrapi.dll. This file is
installed into the main directory where StreamStor files are located. When

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T

 24242424

developing custom applications you must make sure this file is available in a
directory where the operating system searches for DLL files. The Linux library is
named libssapi.a and all functions are statically linked into the user application
from this library archive.

���� CAUTION: Modifying the Windows registry incorrectly can irreparably damage
your Windows installation.

Windows Uninstall
The StreamStor SDK can be easily uninstalled in Windows by using the
“Add/Remove Software” wizard in the control panel. Simply select “StreamStor
SDK” and all installed components will be automatically removed. You can also
select “Remove StreamStor SDK” in the StreamStor menu.

Windows Configuration/Test Utility
The utility program sscfg.exe is included with the SDK for the purpose of
testing the StreamStor system for proper configuration and functionality. If you
have just received your StreamStor system or you are experiencing problems,
running this program will perform a configuration and confidence test to insure that
your system is working properly. The DLL bisrun.dll is a required component
and should have been installed automatically into the installation directory. If
sscfg.exe is moved you must also move bisrun.dll to the same directory
or to a Windows system directory. The initial sscfg screen will look something like
this:

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T

 25252525

If more than one StreamStor is installed in your system there will be multiple choices
in the card number pull down menu. After selecting the card number you must press
the Initialize button to begin the process of finding, initializing and querying the
StreamStor board for device information. If your board has been successfully
configured Initialize will enable the Test button and fill in the various device
information fields. The sscfg screen should now appear similar to this:

If you encounter an error during initialization there may be damage to your system
from shipping or the system has not been installed correctly. Please contact technical
support for assistance.

If the initialization has completed successfully you should check the information
provided by sscfg to insure your system has been correctly identified according to
your purchased model and configuration. If you discover any problems please
contact Conduant. At this point you should press the Test button to run a quick
confidence test on the controller board and disk system.

���� CAUTION: Running the confidence test in sscfg WILL overwrite any recorded
data on StreamStor storage.

If you get any error messages running this test please follow the instructions in the
Troubleshooting section. If this test completes successfully your StreamStor system
is functioning normally.

Windows Fetch Utility
The utility program ssfetch.exe has been included to provide a basic tool for
retrieving data from the StreamStor storage system to system disk files. The
interface to ssfetch looks like this:

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T

 26262626

There are two options when using ssfetch to retrieve data, the first option is to
simply retrieve a block of data to a single system file. The “Single File” button
enables this mode and the filename specified is used as the destination for data
retrieved from StreamStor. The current status of the recorder is displayed in the
“Status” field and the “Available bytes” field indicates the length of data currently
recorded on the device. The “Read From” box provides the controls for specfying
the location and amount of data to be retrieved. The amount (File size) and address
must be an increment of 4 bytes.

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T

 27272727

The second option for retrieving data is to use the “Multiple Files” option to
automatically create system files of sequential and equal size data blocks from
StreamStor. The directory field allows you to choose an alternate system directory
(current directory will be used by default). The prefix and extension fields are used to
define the common text for the filenames. The “Start #”, “End #” and “Digits”
define a number used to form unique filenames. The “Start #” with the number of
digits defined by “Digits” is appended to the prefix and the extension is appended
after that (with a period) to form the filename. The “Filenames” area will show a
preview of the file names to be used. The amount of data specified by “File size” is
written to this file and the process is repeated with the number incrementing until
“End #” is reached. The “Byte Address” for each retrieval is incremented by the file
size amount so that sequential data is retrieved. This mode is useful for retrieving
blocks of data into independent files when the size of the block is fixed such as when
digital images have been recorded.

In both modes, the “Byte address” field is automatically incremented after each fetch
by the amount of data transferred.

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T

 28282828

Windows Library
The software development kit includes a DLL library for integration of StreamStor
into Windows based user applications. The required DLL file is xlrapi.dll.
The library file xlrapi.lib is also included for linking the DLL functions to a
user program. The required include files are xlrapi.h and xlrtypes.h. Only
the xlrapi.h file needs to be included in a user program. Example programs are
included in the SDK. All of the include files are installed automatically by the
installation software in the “Include” directory. The library file for linking user
programs is installed in the “Lib” directory and the DLL is installed in the Windows
system directory.

Linux Library
When the SDK is installed on a Linux system a static function library is installed
named libssapi.a with all the StreamStor API functions. The required include
files are xlrapi.h and xlrtypes.h. Only the xlrapi.h file must be
included by the user application. The library must be supplied to the linker to create
a final executable program.

API Functions
XLRApiVersion - Reports version of API library in use.
XLRAppend - Append data to an existing recording.
XLRCardReset - Reset an unopened StreamStor card.
XLRClose - Closes device and releases exclusive access.
XLRDeleteAppend - Delete the last appended data section.
XLRDeviceFind - Reports number of StreamStor cards present in system.
XLRGetBaseAddr - Get base address (physical) of StreamStor data window.
XLRGetBaseRange - Get size of StreamStor data window.
XLRGetDeviceInfo - Retrieves hardware configuration information.
XLRGetDeviceStatus - Get current status of device.
XLRGetDirectory - Get directory info on current recorded data.
XLRGetDriveInfo - Get information on an individual disk drive.
XLRGetErrorMessage - Get error string for supplied error code.
XLRGetLastError - Returns error code of last failure.
XLRGetLength - Returns number of available bytes.
XLRGetLengthHigh - Returns high word of recording length (bytes)
XLRGetLengthLow - Returns low word of recording length (bytes)
XLRGetLengthPages - Returns recording length in number of system pages
XLRGetLengthLowHigh -Returns low and high word of recording length (bytes)
XLRGetPlayLength - Returns the number of bytes played back.
XLRGetSystemAddr - Returns the kernel address of StreamStor data window.
XLRGetVersion - Reports version of StreamStor firmware components.

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T

 29292929

XLRGetWindowAddr - Get user virtual address of StreamStor data window.
XLROpen - Opens the device for exclusive access.
XLRPlay - Reads data from StreamStor directly to PCI address
XLRPlayback - Puts StreamStor into playback mode at the specified

data address.
XLRRead - Read data.
XLRReadData - Same as XLRRead without structure.
XLRReadFifo - Read data during a FIFO operation.
XLRReadImmed - Read from StreamStor but return control without wait

for completion.
XLRReadStatus - Check for completion of XLRReadImmed request.
XLRRecord - Start recording.
XLRRecoverData - Recover data when a recording has been interrupted.
XLRReset - Reset and close an open device.
XLRSetFifoMode - Put StreamStor into FIFO operating mode.
XLRSetFPDPMode - Set the operating mode of the FPDP data port.
XLRSetMode - Set input/output mode of board.
XLRSetPortClock - Set the clock speed of the external port.
XLRSetReadLimit - Sets the range of any read accesses performed from an

outside bus master.
XLRStop - Stop recording.
XLRTruncate - Truncate and existing recording at specified location.
XLRWrite - Write a memory buffer to StreamStor
XLRWriteData - Same as XLRWrite without structure

Data Structures
S_DEVINFO - Device info parameters
S_DEVSTATUS - Device status flags
S_DIR - Recording directory
S_DRIVEINFO - Drive information
S_READDESC - Parameters defining read request
S_XLRSWREV - Various device version strings

30303030

Function Reference

Chapter

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 31313131

XLRApiVersion

Syntax:
char *XLRApiVersion(char *versionstring)

Description:
XLRApiVersion returns the API version as a string formatted as a major.minor version
number.

• versionstring is a pointer to a character string to hold the returned version. It must be of
minimum length XLR_VERSION_LENGTH.

Return Value:
versionstring is returned.

Usage:
/* Read XLR API version into string */
char xlrstring[XLR_VERSION_LENGTH];

XLRApiVersion(xlrstring);
printf(“%s”, xlrstring);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 32323232

XLRAppend

Syntax:
XLR_RETURN_CODE XLRAppend(SSHANDLE xlrDevice)

Description:
XLRAppend is used to restart a recording after it has been stopped. Data is appended to the
existing recording.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
S_READDESC readDesc;
ULONG myBuffer[40000];
XLR_RETURN_CODE xlrReturnCode;

xlrReturnCode = XLRRecord(xlrDevice, 0, 1);
if(xlrReturnCode != XLR_SUCCESS)

exit(1);

//
// Data transfer….
//
// Stop the record operation
XLRStop(xlrDevice);

// Read some data back
readDesc.AddrHi = 0;
readDesc.AddrLo = 0x120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = &myBuffer;

xlrReturnCode = XLRRead(xlrDevice, &readDesc);
if(xlrReturnCode != XLR_SUCCESS)

exit(1);

//
// Now start recording again without overwriting previous data
//
xlrReturnCode = XLRAppend(xlrDevice);
if(xlrReturnCode != XLR_SUCCESS)

exit(1);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 33333333

XLRCardReset

Syntax:
XLR_RETURN_CODE XLRCardReset(UINT index)

Description:
XLRCardReset will attempt to reset a StreamStor device and re-initialize the hardware and
firmware. This function should be used only as a last resort.

• index is the card index number (see XLROpen).

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
xlrReturnCode = XLRCardReset(1);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 34343434

XLRClose

Syntax:
void XLRClose(SSHANDLE xlrDevice)

Description:
XLRClose closes the StreamStor device. This should be called before exiting an application
that has opened a StreamStor device with XLROpen. No other application can open the
StreamStor device until this function has been called.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
none

Usage:
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrstatus;

// Open the device
xlrstatus = XLROpen(1, &xlrDevice);
.
.
.
// Close device before exiting
XLRClose(xlrDevice);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 35353535

XLRDeleteAppend

Syntax:
XLR_RETURN_CODE XLRDeleteAppend(SSHANDLE xlrDevice, ULONG
AddrHigh, ULONG AddrLow)

Description:
XLRDeleteAppend deletes the last appended data set on the StreamStor device. An
appended data set is defined as the data recorded to StreamStor with the XLRAppend function.
An optional address can be provided to define the new last append start point. Zero should be
used for the address in most circumstances.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• AddrHigh is the upper 32 bits of the 64 bit address to use for the new last append start
point. In most cases, this should be zero.

• AddrLow is the upper 32 bits of the 64 bit address to use for the new last append start
point. In most cases, this should be zero.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrstatus;

// Open the device
xlrstatus = XLROpen(1, &xlrDevice);

// Append data
xlrstatus = XLRAppend(xlrDevice);
.
.
.
// Stop recording
XLRStop(xlrDevice);

// Delete just the data recorded above
xlrstatus = XLRDeleteAppend(xlrDevice, 0, 0);

// Close device before exiting
XLRClose(xlrDevice);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 36363636

XLRDeviceFind

Syntax:
UINT XLRDeviceFind()

Description:
XLRDeviceFind searches the PCI bus(es) and returns the number of StreamStor cards
present in the system.

Return Value:
This function returns the number of StreamStor cards in the system. If the driver has not been
installed properly this function will also return zero.

Usage:
UINT NumCards;

if(NumCards = XLRDeviceFind())
{

// There are StreamStor cards on this system
printf(“StreamStor cards found: %d\n”, NumCards);

}
else
{

// No StreamStor cards on the system
printf(“No StreamStor cards detected!\n”);

}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 37373737

XLRGetBaseAddr

Syntax:
ULONG XLRGetBaseAddr(SSHANDLE xlrDevice)

Description:
XLRGetBaseAddr returns the physical address of the recording data window. This address
can be used to program PCI hardware devices for direct card to card data transfer. The address
returned from this function is NOT a valid user address.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
This function returns the physical PCI address as a 32 bit unsigned integer.

Usage:
ULONG xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{

// Error opening StreamStor
}
else
{

xlrAddress = XLRGetBaseAddr(xlrDevice);
}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 38383838

XLRGetBaseRange

Syntax:
ULONG XLRGetBaseRange(SSHANDLE xlrDevice)

Description:
XLRGetBaseRange returns the size of the StreamStor device data window in bytes. This range
of addresses is intended to be used by hardware transferring data that cannot be programmed to
write with a non-incrementing address. Note that the address used to write to StreamStor does
not effect the storage location of the data, StreamStor always stores data sequentially in the
order it is written regardless of the address.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
This function returns the window size in bytes.

Usage:
ULONG xlrAddress, xlrRange;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{

// Error opening StreamStor
}
else
{

xlrAddress = XLRGetBaseAddr(xlrDevice);
xlrRange = XLRGetBaseRange(xlrDevice);

}
// DMA Hardware may now be programmed to write to any address from
// xlrAddress to (xlrAddress + xlrRange)

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 39393939

XLRGetDeviceInfo

Syntax:
XLR_RETURN_CODE XLRGetDeviceInfo(SSHANDLE xlrDevice, PS_DEVINFO
pDevInfo)

Description:
XLRGetDeviceInfo retrieves info from the StreamStor device about its physical
configuration.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pDevInfo is a pointer to an S_DEVINFO structure.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
SSHANDLE xlrDevice;
S_DEVINFO devInfo;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)

return(1);
xlrReturn = XLRGetDeviceInfo(xlrDevice, &devInfo);
if(xlrReturn != XLR_SUCCESS)

return(1);
printf(“StreamStor serial number is: %d”, devInfo.SerialNum);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 40404040

XLRGetDeviceStatus

Syntax:
XLR_RETURN_CODE XLRGetDeviceStatus(SSHANDLE xlrDevice,
PS_DEVSTATUS pDevStatus)

Description:
XLRGetDeviceStatus retrieves status of the StreamStor device.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pDevStatus is a pointer to an S_DEVSTATUS structure.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
SSHANDLE xlrDevice;
S_DEVSTATUS devStatus;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)

return(1);
xlrReturn = XLRGetDeviceStatus(xlrDevice, &devStatus);
if(xlrReturn != XLR_SUCCESS)

return(1);
if(devStatus.Recording)

printf(“StreamStor is recording.”);
else

printf(“StreamStor is idle”);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 41414141

XLRGetDirectory

Syntax:
XLR_RETURN_CODE XLRGetDirectory(SSHANDLE xlrDevice, PS_DIR pDir)

Description:
XLRGetDirectory gets the directory information of the current recording on a StreamStor
device. Use XLRGetLengthPages for new applications.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pDir is a pointer to an S_DIR structure to be filled by this function call.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
XLR_RETURN_CODE xlrReturn;
S_DIR xlrDir;

xlrReturn = XLRGetDirectory(xlrDevice, &xlrDir);
if(xlrReturn != XLR_SUCCESS)

return(1);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 42424242

XLRGetDriveInfo

Syntax:
XLR_RETURN_CODE XLRGetDriveInfo(SSHANDLE xlrDevice, UINT Bus, UINT
MasterSlave, PS_DRIVEINFO pDriveInfo)

Description:
XLRGetDriveInfo retrieves info from the StreamStor drive about its physical configuration.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Bus is the ATA bus number of the drive

• MasterSlave is XLR_MASTER_DRIVE (0) or XLR_SLAVE_DRIVE (1)to
select the master or slave drive on the ATA bus.

• pDriveInfo is a pointer to an S_DRIVEINFO structure.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
SSHANDLE xlrDevice;
S_DRIVEINFO drvInfo;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)

return(1);
xlrReturn = XLRGetDriveInfo(xlrDevice, 0, XLR_MASTER_DRIVE, &drvInfo);
if(xlrReturn != XLR_SUCCESS)

return(1);
printf(“Drive serial number is: %s”, drvInfo.Serial);
printf(“Drive model number is: %s”, drvInfo.Model);
printf(“Drive firmware revision: %s”, drvInfo.Revision);
printf(“Drive capacity (sectors): %d”, drvInfo.Capacity);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 43434343

XLRGetErrorMessage

Syntax:
XLR_RETURN_CODE XLRGetErrorMessage(char *string,XLR_ERROR_CODE err)

Description:
XLRGetErrorMessage returns the error message of the most recent API failure.

• string is a pointer to a string to accept the error message of at least
XLR_ERROR_LENGTH size.

• err is an error code returned from XLRGetLastError

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
SSHANDLE xlrHandle
S_DIR xlrDir
XLR_RETURN_CODE xlrReturn;
XLR_ERROR_CODE xlrError;
char temp[XLR_ERROR_LENGTH];

xlrReturn = XLRGetDirectory(xlrHandle, &xlrDir);
if(xlrReturn != XLR_SUCCESS)
{

xlrError = XLRGetLastError();
XLRGetErrorMessage(temp, xlrError);
printf(“%s\n”, temp);
exit(1);

}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 44444444

XLRGetLastError

Syntax:
XLR_ERROR_CODE XLRGetLastError(void)

Description:
XLRGetLastError returns the error code of the most recent API failure.

Return Value:
This function returns the error code (see Appendix A).

Usage:
XLR_ERROR_CODE xlrError;
char temp[XLR_ERROR_LENGTH];

xlrReturn = XLRGetDirectory(xlrDevice, &xlrDir);
if(xlrReturn != XLR_SUCCESS)
{

xlrError = XLRGetLastError();
XLRGetErrorMessage(temp, xlrError);
printf(“%s\n”, temp);
exit(1);

}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 45454545

XLRGetLength

Syntax:
DWORDLONG XLRGetLength(SSHANDLE xlrDevice)

Description:
XLRGetLength returns the length of the current recording as a 64 bit integer in number of
bytes. This function can be used during an active recording or FIFO operation. Note that
during active record and FIFO operations the returned value may not be exact since data is still
moving between devices.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

• Current recording length in bytes.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 46464646

XLRGetLengthHigh

Syntax:
ULONG XLRGetLengthHigh(SSHANDLE xlrDevice)

Description:
XLRGeLengthHigh returns the upper 32 bit integer of the current recording length in number
of bytes. This function is provided for programming environments unable to handle 64 bit
integers. Due to possibility of mismatch between subsequent calls of XLRGetLengthHigh
and XLRGetLengthLow it is recommended that XLRGetLength or XLRGetLengthPages
be used instead.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

• Value of high word (bits 32-63) of recording length.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 47474747

XLRGetLengthLowHigh

Syntax:
void XLRGetLengthLowHigh(SSHANDLE xlrDevice, PULONG low, PULONG
high)

Description:
XLRGeLengthLowHigh returns the current recording length in number of bytes in two 32 bit
variables. This function is provided for programming environments unable to handle 64 bit
integers.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• low is a pointer to a ULONG (unsigned int) that will be written with the lower 32 bits of
the recording size in bytes.

• high is a pointer to a ULONG (unsigned int) that will be written with the upper 32 bits of
the recording size in bytes.

Return Value:

• none

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 48484848

XLRGetLengthLow

Syntax:
ULONG XLRGetLengthLow(SSHANDLE xlrDevice)

Description:
XLRGeLengthLow return the lower 32 bit integer of the current recording length in number of
bytes. This function is provided for programming environments unable to handle 64 bit
integers. Due to possibility of mismatch between subsequent calls of XLRGetLengthHigh
and XLRGetLengthLow it is recommended that XLRGetLength or XLRGetLengthPages
be used instead.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

• Value of low word (bits 0-31) of recording length.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 49494949

XLRGetLengthPages

Syntax:
ULONG XLRGetLengthPages(SSHANDLE xlrDevice)

Description:
XLRGetLengthLow returns current recording length in units of system pages. This function is
provided for programming environments unable to handle 64 bit integers. Windows
environments typically utilize a page size of 4096 bytes but this should be checked using a query
to the operating system.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

• Recording length in system pages

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 50505050

XLRGetPlayLength

Syntax:
DWORDLONG XLRGetPlayLength(SSHANDLE xlrDevice)

Description:
XLRGetPlayLength returns the number of bytes that have been played back between calling
XLRPlayBack and XLRStop.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

• Number of bytes played back.

Usage:
ULONG addrHi, addrLow;
DWORDLONG bytesPlayed;

addrHi = 0;
addrLow = 0xFE120000;

xlrReturnCode = XLRPlayback(xlrDevice, addrLow, addrHi);
…

XLRStop(xlrDevice);

// Get the number of bytes that were played back.
bytesPlayed = XLRGetPlayLength(xlrDevice);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 51515151

XLRGetSystemAddr

Syntax:
ULONG XLRGetSystemAddr(SSHANDLE xlrDevice)

Description:
XLRGetSystemAddr returns the kernel address of the recording data window. This address
can be used from device drivers or other kernel level software. The address returned from this
function is NOT a valid user address.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
This function returns the physical PCI address as a 32 bit unsigned integer.

Usage:
ULONG xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{

// Error opening StreamStor
}
else
{

xlrAddress = XLRGetSystemAddr(xlrDevice);
}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 52525252

XLRGetVersion

Syntax:
XLR_RETURN_CODE XLRGetVersion(SSHANDLE xlrDevice, PS_XLRSWREV
pVersion)

Description:
XLRGetVersion gets the API and firmware version information from a StreamStor device.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pVersion is a pointer to an S_XLRSWREV structure to hold the version strings returned.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
S_XLRSWVER swVersion;

xlrReturnCode = XLRGetVersion(xlrDevice, &swVersion);
if(xlrReturnCode != XLR_SUCCESS)
{

xlrError = XLRGetLastError();
XLRGetErrorMessage(temp, xlrError);
printf(“%s\n”, temp);
exit(1);

}
printf(“Firmware version: %s\n”, swVersion.FirmwareVersion);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 53535353

XLRGetWindowAddr

Syntax:
PULONG XLRGetWindowAddr(SSHANDLE xlrDevice)

Description:
XLRGetWindowAddr returns the user virtual address of the recording data window. This
address can be used to directly write data to the StreamStor device from a user program.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
This function returns a pointer to the data window mapped into the user virtual address space.

Usage:
PULONG xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn == XLR_SUCCESS)
{

xlrAddress = XLRGetWindowAddr(xlrDevice);
*xlrAddress = someData;

/* SomeData has been written to the StreamStor device, note that */
/* xlrAddress does not need to be incremented for subsequent writes */

}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 54545454

XLROpen

Syntax:
XLR_RETURN_CODE XLROpen(UINT devIndex, SSHANDLE *pXlrHandle)

Description:
XLROpen opens a StreamStor device and initializes the hardware and firmware in preparation
for recording. Device is transitioned to system ready state if required. This function must be
called before any other API function. After successful completion of this function, the handle
pointed to by xlrHandle can be used for all subsequent API calls.

• devIndex identifies the desired StreamStor to open when multiple StreamStor devices are
in use. Use 1 for single card systems. Use XLRDeviceFind to find the number of devices
installed.

• pXlrHandle is a pointer to a system handle for initialization. Successful completion loads
this parameter with a valid handle to the hardware device to use in subsequent API calls.
*pXlrHandle is assigned the value INVALID_SSHANDLE on failure.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.
NOTE: You should call XLRClose even if XLROpen returns XLR_FAIL.

Usage:
SSHANDLE xlrHandle;
XLR_RETURN_CODE xlrReturnCode;
ULONG xlrError;
char errString[XLR_ERROR_LENGTH];

xlrReturnCode = XLROpen(1, &xlrHandle);
if(xlrReturnCode != XLR_SUCCESS)
{

xlrError = XLRGetLastError();
XLRGetErrorMessage(errString, xlrError);
printf(“%s\n”, errString);
XLRClose(xlrHandle);
exit(1);

}
.
.
.
XLRClose(xlrHandle);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 55555555

XLRPlay

Syntax:
XLR_RETURN_CODE XLRPlay(SSHANDLE xlrDevice, PS_READDESC pReadDesc
)

Description:
XLRPlay reads data from the StreamStor device and writes directly to a supplied PCI hardware
address. This function is intended only for moving data between StreamStor and another device
on the bus. The Buffer Address supplied MUST be a physical address and the entire transfer
size must be available. The supplied address and length will be used to directly program the
StreamStor DMA to transfer the data. Specifying incorrect addresses to this function can cause
system crashes and instability.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pReadDesc is a pointer to an S_READDESC structure that holds the read address, length
and physical address for the read data.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
S_READDESC readDesc;

readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = XLRGetBaseRange(xlrDevice);
readDesc.BufferAddr = myDeviceAddress;

xlrReturnCode = XLRPlay(xlrDevice, &readDesc);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 56565656

XLRPlayback

Syntax:
XLR_RETURN_CODE XLRPlayback(SSHANDLE xlrDevice, ULONG Addrhigh,
ULONG Addrlow)

Description:
XLRPlayback puts StreamStor into playback mode where data is made available for reading
by an outside device. This function is intended only for moving data between StreamStor and
another device on the bus. The supplied address will be used to set the starting point of the
data to be made available for read.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• AddrHigh is the upper 32 bit value of the 64 bit address to begin reading.

• AddrLow is the lower 32 bit value of the 64 bit address to begin reading.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
ULONG addrHi, addrLow;

addrHi = 0;
addrLow = 0xFE120000;

xlrReturnCode = XLRPlayback(xlrDevice, addrLow, addrHi);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 57575757

XLRRead

Syntax:
XLR_RETURN_CODE XLRRead(SSHANDLE xlrDevice, PS_READDESC pReadDesc
)

Description:
XLRRead reads data from the StreamStor device.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pReadDesc is a pointer to an S_READDESC structure that holds the read address, length
and buffer address for the read data.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
S_READDESC readDesc;
ULONG myBuffer[40000];

readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = myBuffer;

xlrReturnCode = XLRRead(xlrDevice, &readDesc);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 58585858

XLRReadData

Syntax:
XLR_RETURN_CODE XLRReadData(SSHANDLE xlrDevice, PULONG Buffer,
ULONG AddrHigh, ULONG AddrLow, ULONG XferLength)

Description:
XLRReadData reads data from the StreamStor device. This function is identical to XLRRead
without the structure to pass request parameters.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Buffer is the address of the user memory buffer to hold the requested data.

• AddrHigh is the upper 32 bits of a 64 bit byte address of the requested data.

• AddrLow is the lower 32 bits of a 64 bit byte address of the requested data.

• XferLength is the number of bytes requested.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
ULONG myBuffer[40000];

xlrReturnCode = XLRReadData(xlrDevice, myBuffer, 0, 0xFE120000,
sizeof(myBuffer));

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 59595959

XLRReadFifo

Syntax:
XLR_RETURN_CODE XLRReadFifo(SSHANDLE xlrDevice, PULONG Buffer,
ULONG Length, BOOLEAN Direct)

Description:
XLRRead reads data from the StreamStor device during a FIFO operation. Data can continue
to be read with this function until the FIFO is empty or XLRStop is called.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Buffer is the address of the buffer to receive the read data.

• Length is the length of data to transfer in bytes.

• Direct is a flag that indicates if the supplied Buffer address is a physical address for direct
transfer. For normal transfer to a user memory buffer this flag should be FALSE (0).

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
ULONG myBuffer[40000];

xlrReturnCode = XLRReadFifo(xlrDevice, myBuffer, sizeof(myBuffer), FALSE);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 60606060

XLRReadImmed

Syntax:
XLR_RETURN_CODE XLRReadImmed(SSHANDLE xlrDevice, PS_READDESC
pReadDesc)

Description:
XLRReadImmed reads data from the StreamStor device without waiting for completion. You
must receive XLR_READ_COMPLETE status from XLRReadStatus before any other
commands can be issued. Note that only a single outstanding request is allowed per execution
thread.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pReadDesc is a pointer to an S_READDESC structure that holds the read address, length
and buffer address for the read data.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
S_READDESC readDesc;
ULONG myBuffer[40000];
XLR_READ_STATUS readStatus;
XLR_RETURN_CODE xlrReturnCode;

readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = myBuffer;

xlrReturnCode = XLRReadImmed(xlrDevice, &readDesc);

/* DO OTHER WORK HERE */

readStatus = XLRReadStatus(TRUE);
if(readStatus != XLR_READ_COMPLETE)
{

/* PROCESS ERROR! */
}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 61616161

XLRReadStatus

Syntax:
XLR_RETURN_CODE XLRReadStatus(BOOLEAN Wait)

Description:
XLRReadStatus checks status of a read request issued with XLRReadImmed data from the
StreamStor device.

• Wait is a flag to indicate whether or not to wait for completion of the read request. If
TRUE, the function will not return until the read is complete or an error has occurred.

Return Value:
If the read request has completed: XLR_READ_COMPLETE
If the read request is waiting to execute: XLR_READ_WAITING
If the read request is currently executing: XLR_READ_RUNNING
If an error occurred during execution of the request: XLR_READ_ERROR

Usage:
S_READDESC readDesc;
ULONG myBuffer[40000];
XLR_READ_STATUS readStatus;
XLR_RETURN_CODE xlrReturnCode;

readDesc.AddrHi = 0;
readDesc.AddrLo = 0xFE120000;
readDesc.XferLength = sizeof(myBuffer);
readDesc.BufferAddr = myBuffer;

xlrReturnCode = XLRReadImmed(xlrDevice, &readDesc);

while(moreWork)
{

/* DO OTHER WORK HERE */

readStatus = XLRReadStatus(FALSE);
if(readStatus == XLR_READ_ERROR)
{

/* PROCESS ERROR! */
}
else if(readStatus == XLR_READ_COMPLETE)

break;
}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 62626262

XLRRecord

Syntax:
XLR_RETURN_CODE XLRRecord(SSHANDLE xlrHandle, BOOL WrapEnable,
SHORT ZoneRange)

Description:
XLRRecord starts the record mode of the StreamStor device. After a successful call of this
function, the StreamStor device will record to disk any data written to its data window.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• WrapEnable should be set to 1 to allow StreamStor to operate as a circular buffer. The
oldest data will be overwritten if more data is received than is available on the disk drives.
To force StreamStor to stop accepting data at the disk storage limits, set this parameter to 0.

• ZoneRange is not currently supported and should be set to 1.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
/* Start recording data but insure that no captured data is overwritten */
xlrReturnCode = XLRRecord(xlrDevice, 0, 1);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 63636363

XLRRecoverData

Syntax:
XLR_RETURN_CODE XLRRecoverData(SSHANDLE xlrHandle)

Description:
XLRRecoverData attempts to recover data from an interrupted recording. If a recording is
ended without calling XLRStop (as might happen if the StreamStor’s power fails),
StreamStor’s directory may be corrupted, making the recording unreadable.
XLRRecoverData will examine the data on the disks and attempt to repair the directory
accordingly. If successfully repaired, the recording should be readable.

Note that in some cases, no recovery or only partial recovery of data is possible. It is the user’s
responsibility to verify the integrity of any recovered data and, if necessary, truncate any
corrupted data from the recording.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
/* Attempt to repair directory and recover data. */
xlrReturnCode = XLRRecoverData(xlrDevice);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 64646464

XLRReset

Syntax:
XLR_RETURN_CODE XLRReset(SSHANDLE xlrDevice)

Description:
XLRReset will attempt to reset a StreamStor device and re-initialize the hardware and
firmware. This function should be used only as a last resort.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
xlrReturnCode = XLRReset(xlrDevice);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 65656565

XLRSetFifoMode

Syntax:
XLR_RETURN_CODE XLRSetFifoMode(SSHANDLE xlrDevice, UINT Mode)

Description:
XLRSetFifoMode controls the setting and clearing of FIFO modes.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Mode is a constant that defines the mode of operation. Possible values are:
XLR_MODE_FIFO and XLR_MODE_DEFAULT.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
// Put StreamStor into FIFO mode of operation
xlrReturnCode = XLRSetFifoMode(xlrDevice, XLR_MODE_FIFO);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 66666666

XLRSetFPDPMode

Syntax:
XLR_RETURN_CODE XLRSetFPDPMode(SSHANDLE xlrDevice, FPDPMODE Mode,
FPDPOP option)

Description:
XLRSetFPDPMode is used to set the operating mode of the FPDP port on PCI-816XF and
PCI-816XF2 model StreamStor boards.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Mode is a constant that defines the mode of operation. Possible values (refer to FPDP
section of Chapter 8) are:
SS_FPDP_RECV – Sets StreamStor port to FPDP/R mode.
SS_FPDP_RECVMASTER – Sets StreamStor to FPDP/RM mode.
SS_FPDP_XMIT – Sets StreamStor to FPDP/T mode.
SS_FPDP_XMITMASTER – Sets StreamStor to FPDP/TM mode.
SS_FPDP_RECVMASTER_CLOCKS – Sets StreamStor to FPDP/RMCM mode.

• option is used to specify various options that modify the operation of the FPDP port.
Possible values are:
��0 (zero) – Disables all options.

��SS_OPT_FPDPNRASSERT – Assert the “Not ready” signal on the FPDP bus when not
recording. This prevents data flow on FPDP when StreamStor is not recording.

��SS_OPT_FPDPSTROB – Enables data strobe clock (TTL strobe signals). Default is pstrob
clock (PECL strobe signals).

��SS_OPT_FPDPEXTCONN – Selects the connector on the external interface. Default is
the card top connector.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 67676767

Usage:
// Example 1: Set the FPDP port mode to FPDP/R and use the default
// options.
xlrReturnCode = XLRSetFPDPMode(xlrDevice, SS_FPDP_RECV, 0);

// Example 2: Enable the data strobe clock and "Not Ready" assert options.
xlrReturnCode =

XLRSetFPDPMode(xlrdevice,
FPDP_RECV, SS_OPT_FPDPSTROB|SS_OPT_NRASSERT);

// Example 3: Enable data strobe clock.
XLRSetFPDPMode(xlrdevice, FPDP_RECV, SS_OPT_FPDPSTROB);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 68686868

XLRSetMode

Syntax:
XLR_RETURN_CODE XLRSetMode(SSHANDLE xlrDevice, SSMODE Mode)

Description:
XLRSetMode is used to set the input/output path of StreamStor boards that support external
ports.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Mode is a constant that defines the mode for StreamStor’s external port operation. Possible
values are:
SS_MODE_PCI - This is the default mode that receives and sends data over the PCI bus
and is set when the device is opened.

SS_MODE_EXT - In this mode the data is received or played over the external port. The
XLRRead command is unaffected and will still allow retrieval of data from StreamStor to
system memory. When recording (XLRRecord or XLRAppend) this command causes
data to be recorded to disk from the external port. When XLRPlay is used, data is read
from disk and output via the external port.

SS_MODE_READ_EXT - This mode bypasses disk storage and uses the StreamStor buffer
as a FIFO to read data from the external port. XLRRecord intiates the system to receive
data into the StreamStor buffer in a first in/first out mode. XLRReadFifo is used to
retrieve data into system memory from this FIFO buffer.

SS_MODE_WRITE_EXT - This mode bypasses disk storage and uses the StreamStor buffer
as a FIFO to write data to the external port. XLRRecord intiates the system and
XLRWrite or memory copies to StreamStor memory put data into the buffer for delivery
over the external port.

SS_MODE_PCI_FORK - This mode "forks" data received on the PCI bus and records it to
disk and outputs it to the external port. Care must be taken to insure the external port is
able to output data fast enough to prevent overflowing the StreamStor buffer.

SS_MODE_EXT_FORK - This mode "forks" data received from the external port and makes
it available for reading to system memory.

SS_MODE_EXT_PASSTHRU - This mode bypasses disk storage and cross connects the
external ports through the StreamStor buffer. This is a hardware setup and no other
StreamStor commands are accepted until a new mode is specified.

Return Value:
On success, this function returns XLR_SUCCESS.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 69696969

On failure, this function returns XLR_FAIL.

Usage:
// Set StreamStor to use the external port
xlrReturnCode = XLRSetMode(xlrDevice, SS_MODE_EXT);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 70707070

XLRSetPortClock

Syntax:
XLR_RETURN_CODE XLRSetPortClock(SSHANDLE xlrDevice, UINT clock)

Description:
XLRSetPortClock is used to set the operating frequency of the external port if applicable.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• clock is a constant that defines the desired clock frequency. Possible values are:
SS_PORTCLOCK_8MHZ
SS_PORTCLOCK_10MHZ
SS_PORTCLOCK_11MHZ // 11.4 MHz
SS_PORTCLOCK_13MHZ // 13.33 MHz
SS_PORTCLOCK_16MHZ
SS_PORTCLOCK_20MHZ
SS_PORTCLOCK_26MHZ // 26.66 MHz
SS_PORTCLOCK_40MHZ

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
// Set the external clock frequency
xlrReturnCode = XLRSetPortClock(xlrDevice, SS_PORTCLOCK_40MHZ);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 71717171

XLRSetReadLimit

Syntax:
XLR_RETURN_CODE XLRSetReadLimit(SSHANDLE xlrDevice, ULONG Limit)

Description:
XLRSetReadLimit sets the size of the address range an outside device will be using when
reading data from StreamStor during playback (XLRPlayback). This is required to prevent
StreamStor hardware from discarding cached read data when an external DMA engine recyles
to a new starting read address on the PCI bus.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Limit is the address range size that the outside device will use when reading from
StreamStor during playback operations.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
ULONG DMA_size = 0x2000;
PULONG pBuffer;
PULONG pSSAddr;

// Put StreamStor into Playback mode at beginning of recording
xlrReturnCode = XLRSetReadLimit(xlrDevice, DMA_size);
xlrReturnCode = XLRPlayback(xlrDevice, 0, 0);

// Outside device can now DMA data from StreamStor within an
// address range size defined by DMA_size.
// The following simulates this by reading from StreamStor to memory
pBuffer = (PULONG)malloc(DMA_size);
pSSAddr = XLRGetWindowAddr(xlrDevice);

for(j = 0; j < loops; j++)
{

for(i = 0; i < DMA_size; i += 4)
{

*pBuffer++ = *pSSAddr++;
}

}

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 72727272

XLRStop

Syntax:
XLR_RETURN_CODE XLRStop(SSHANDLE xlrDevice)

Description:
XLRStop will halt a recording operation and make sure all data is flushed to disk. This
function should always be used to end a recording.

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
xlrReturnCode = XLRStop(xlrDevice);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 73737373

XLRTruncate

Syntax:
XLR_RETURN_CODE XLRTruncate(SSHANDLE xlrDevice, ULONG AddrHigh,
ULONG AddrLow)

Description:
XLRTruncate will truncate an existing recording at the address provided. The address must
fall within the bounds of the currently recorded data set.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• AddrHigh is the upper 32 bits of the 64 bit address that identifies the location to truncate
the recording at.

• AddrLow is the lower 32 bits of the 64 bit address that identifies the location to truncate
the recording at.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrstatus;
ULONG AddrHi;
ULONG AddrLo;

// Open the device
xlrstatus = XLROpen(1, &xlrDevice);

// Append data
xlrstatus = XLRAppend(xlrDevice);
.
.
.
// Stop recording
XLRStop(xlrDevice);

// Truncate the recording.
AddrHi = 0;
AddrLo = 0xFE120000;

xlrstatus = XLRTruncate(xlrDevice, AddrHi, AddrLo);

// Close device before exiting
XLRClose(xlrDevice);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 74747474

XLRWrite

Syntax:
XLR_RETURN_CODE XLRWrite(SSHANDLE xlrDevice, PS_READDESC
pWriteDesc)

Description:
XLRWrite writes data from a user memory buffer to StreamStor. StreamStor must be in
record mode (XLRRecord or XLRAppend) before calling this function.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pWriteDesc is a pointer to an S_READDESC structure that holds the length and buffer
address of the write data. Note that the AddrHigh and AddrLow parameters are ignored.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
SSHANDLE xlrDevice;
S_READDESC writeDesc;
ULONG myBuffer[40000];

writeDesc.XferLength = sizeof(myBuffer);
writeDesc.BufferAddr = myBuffer;

/* Open StreamStor */
if(XLROpen(&xlrDevice, 1) != XLR_SUCCESS (

return(1);

/* Put StreamStor into record mode */
if(XLRRecord(xlrDevice, 0, 1) != XLR_SUCCESS)

return(1);

/* Fill the memory here */

/* Write the buffer to StreamStor */
if(XLRWrite(xlrDevice, &readDesc) != XLR_SUCCESS)

return(1);

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 75757575

XLRWriteData

Syntax:
XLR_RETURN_CODE XLRWriteData(SSHANDLE xlrDevice, PVOID BufAddr,
ULONG TransferSize)

Description:
XLRWriteData is identical to XLRWrite except that the parameters are not passed in a
structure.

• xlrDevice is the device handle returned from a previous call to XLROpen.

• BufAddr is a pointer to the buffer to be written to StreamStor.

• TransferSize is the number of bytes to write.

Return Value:
On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:
xlrReturnCode = XLRWriteData(xlrDevice, myBuffer, sizeof(myBuffer));

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 76767676

Structure S_DEVINFO

typedef struct _DEVINFO
{

char BoardType[XLR_MAX_NAME];
UINT SerialNum;
UINT NumDrives;
UINT NumBuses;
UINT TotalCapacity;
UINT MaxBandwidth;
UINT PciBus;
UINT PciSlot;

}S_DEVINFO, *PS_DEVINFO;

Purpose
This structure is used by the XLRGetDeviceInfo function to return data about the
StreamStor system configuration.

Members

• BoardType - String holding the board type (model name).

• SerialNum - Serial number of the StreamStor board.

• NumDrives - Number of drives currently connected and configured on the StreamStor
controller.

• NumBuses – Number of ATA buses in use

• TotalCapacity – Total recording capacity of the StreamStor system in system pages (a
page is 4096 bytes typically on Intel based Windows NT/2000 systems).

• MaxBandwidth – Reserved

• PciBus – The PCI bus number that this board is installed into.

• PciSlot – The PCI slot number that this board is installed into.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 77777777

Structure S_DEVSTATUS

typedef struct _DEVSTATUS
{

BOOLEAN SystemReady;
BOOLEAN BootmonReady;
BOOLEAN Recording;
BOOLEAN Playing;
BOOLEAN VRActive[XLR_MAX_VRS];
BOOLEAN RecordActive[XLR_MAX_VRS];
BOOLEAN ReadActive[XLR_MAX_VRS];
BOOLEAN FifoActive;
BOOLEAN DriveFail;
UINT DriveFailNumber;
BOOLEAN SysError;
UINT SysErrorCode;
BOOLEAN CtlrError;
BOOLEAN FifoFull;
BOOLEAN Overflow[XLR_MAX_VRS];

}S_DEVSTATUS, *PS_DEVSTATUS;

Purpose
This structure holds various system status flags as returned by the XLRGetDeviceStatus
function.

Note: The array index value is always 0 for RecordActive, ReadActive, VRActive, and
Overflow

Members

• SystemReady – System ready flag, indicates the system firmware and hardware have been
initialized successfully.

• BootmonReady – Power on boot flag, indicates that the system boot succeeded and the
system is ready for initialization (XLROpen).

• Recording – Indicates that the system is currently in a record mode.
• Playing – Indicates that the system is currently in a playback mode.
• VRActive – Indicates that the specified virtual recorder is configured and ready.
• RecordActive – Indicates that the specified virtual recorder is currently recording.
• FifoActive – Indicates that the system is currently in FIFO mode.
• DriveFail – Indicates that a drive has failed.
• DriveFailNumber– Indicates the drive that has failed. Valid when DriveFail is TRUE.
• SysError – Indicates that system initialization failed.
• SysErrorCode – Holds initialization error code if SysError is TRUE.
• CtlrError – Indicates an ATA controller has failed.
• FifoFull – Indicates the system is at capacity while in FIFO mode.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 78787878

• Overflow – Indicates the disk drives reached capacity during a record operation.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 79797979

Structure S_DIR

typedef struct _DIR
{

DWORDLONG Length;
DWORDLONG AppendLength;
BOOLEAN Full;

}S_DIR, *PS_DIR;

Purpose
This structure holds the directory information for the current recording. The structure is filled
with a call to XLRGetDirectory. Use XLRGetLengthPages for environments that can’t
support 64 bit integers (DWORLDLONG).

Members

• Length – Length of the current recording in bytes. Note that this parameter is a 64 bit
number.

• AppendLength - Length of the last set of data recorded using XLRAppend. Note that
this parameter is a 64 bit number.

• Full – This flag will be TRUE (non-zero) when the system has been filled to capacity.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 80808080

Structure S_DRIVEINFO

typedef struct _DRIVEINFO
{

char Model[XLR_MAX_DRIVENAME];
char Serial[XLR_MAX_DRIVESERIAL];
char Revision[XLR_MAX_DRIVEREV];
UINT Capacity;
BOOLEAN SMARTCapable;
BOOLEAN SMARTState;

}S_DRIVEINFO, *PS_DRIVEINFO;

Purpose
This structure holds information about a disk drive installed in the system. The structure is
filled with a call to XLRGetDriveInfo.

Members

• Model – Model name as reported by the disk drive identify command.

• Serial – Drive serial number as reported by the disk drive identify command.

• Revision – Drive serial number as reported by the disk drive identify command.

• Capacity – Drive capacity as reported by identify command. Value is number of 512 byte
sectors.

• SMARTCapable – Indicates whether the drive has “SMART” capabilities. SMART is Self-
Monitoring Analysis and Reporting Technology. You can query drives with this technology
and determine if they are faulty. If SMARTCapable is TRUE, the drive has this feature.
Otherwise, the drive does not have this feature.

• SMARTState - On drives that are SMARTCapable, this structure member is used to
indicate the drive’s state. If SMARTState is TRUE, the drive is good. Otherwise, the
drive is faulty. The value of this structure member is only valid if SMARTCapable is
TRUE.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 81818181

Structure S_READDESC

typedef struct _READDESC{
PULONG BufferAddr;
ULONG AddrHi;
ULONG AddrLo;
ULONG XferLength;

}S_READDESC, *PS_READDESC;

Purpose
This structure is used to define the parameters for a read from StreamStor.

Members

• BufferAddr – Address of buffer to hold data read from StreamStor. Must be at least
XferLength bytes.

• AddrHi – High word (32 bit)of starting byte address.

• AddrLo – Low word (32 bit) of starting byte address.

• XferLength – Number of bytes to transfer from StreamStor.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 82828282

Structure S_XLRSWREV

typedef struct _XLRSWREV
{

char ApiVersion[XLR_VERSION_LENGTH];
char ApiDateCode[XLR_DATECODE_LENGTH];
char FirmwareVersion[XLR_VERSION_LENGTH];
char FirmDateCode[XLR_DATECODE_LENGTH];
char MonitorVersion[XLR_VERSION_LENGTH];
char XbarVersion[XLR_VERSION_LENGTH];
char AtaVersion[XLR_VERSION_LENGTH];
char UAtaVersion[XLR_VERSION_LENGTH];

}S_XLRSWREV, *PS_XLRSWREV;

Purpose
This structure is used by XLRGetVersion to return software/hardware version strings.

Members

• ApiVersion – Version of the StreamStor API library.

• ApiDateCode – Build date of the StreamStor API library.

• FirmwareVersion – StreamStor firmware version.

• FirmDateCode – Build date of the firmware software.

• MonitorVersion – Boot monitor firmware version.

• XbarVersion – Controller logic version.

• AtaVersion – ATA controller version.

• UAtaVersion – Ultra ATA controller version.

C H A P T E R 4 : F U N C T I O N R E F E R E N C E

 83838383

84848484

PCI Integration…

Chapter

C H A P T E R 5 : P C I I N T E G R A T I O N

 85858585

PCI Integration
To allow maximum bandwidth for recording digital data over the PCI bus,
StreamStor is designed for direct card to card data transfers. Since many data
acquisition cards already perform DMA operations directly to system memory, the
StreamStor controller uses this capability for the direct transfer of data. The
software development kit provides the necessary control functions for integration of
StreamStor into user applications.

Initialization and Setup
Initialization requires a call to the XLROpen function. This function will lock the
device for exclusive access and initialize the recording system. The initialization
routine includes locating the StreamStor controller on the PCI bus, downloading
software and initializing required data structures, etc.

PCI Bus Interfacing
Although the PCI bus itself has been designed for card to card transactions most
operating systems have no provisions for this functionality. In addition, most
operating systems do not have provisions for real-time event management, which is
required when recording data at high bandwidths. For these reasons there may be a
requirement to modify existing device drivers for the PCI card that is to record data
to the StreamStor system.

The StreamStor controller requests a memory mapped window during computer
booting providing a memory space for writing data to be recorded. The default size
of this window is 8MB although you should use the XLRGetBaseRange to verify
this in your application. The StreamStor SDK provides two functions that return the
physical and logical addresses of this window.

The address returned by XLRGetBaseAddr is the physical address that is assigned
to the StreamStor data window during the boot process. The StreamStor PCI
interface chip will respond to any memory writes on the PCI bus in this address
range. Note, however, that the StreamStor system does not utilize the address to
determine where to store the data. Any data writes are recorded to disk in the order
they are received. This physical address can be used directly for programming DMA
hardware on the PCI data source device. Various techniques can be used for
programming the DMA hardware but generally you will need to set up a DMA
block transfer that continuously recycles back to the original starting address. If the
DMA hardware supports chaining (scatter/gather) then a looping transfer can be
set up. Consult the documentation for your PCI data acquisition card for more
information.

���� CAUTION: The physical address returned by XLRGetBaseAddr cannot be used in
place of a buffer memory address. Use XLRGetWindowAddr instead.

C H A P T E R 5 : P C I I N T E G R A T I O N

 86868686

The address returned by XLRGetWindowAddr is a logical address created by the
operating system to “map” the physical address space of the StreamStor controller
into the application memory space. This address can sometimes be used with
software provided by PCI card vendors in place of the address of a memory buffer.
Check with Conduant about your specific environment for more details. In
addition, “writing” to this address space from an application is an effective method
to save application specific directory or indexing information about the recording. It
is the responsibility of the user application to manage this type of data.

Multi-Card Operation

Multiple StreamStor cards can be used in a single system either on the same bus or
on “bridged” PCI buses. If multiple StreamStor cards are installed into the same bus
there will be contention for ownership of the bus during data transfers and the
effective bandwidth will be reduced. If multiple StreamStor cards are installed on
opposite sides of a PCI-PCI bridge than there is no loss in bandwidth as long as the
data capture card is co-located on the same bus as the StreamStor card it is streaming
data to.

Software applications gain exclusive access to a StreamStor card after calling the
XLROpen function. Until the application exits or calls XLRClose no other
application may connect to that StreamStor card. A single application can connect
to and control multiple StreamStor cards but must manage the unique handles
returned from multiple calls to the XLROpen function. The index number passed
into XLROpen determines which card is to be controlled by the handle returned. If
multiple applications (or multiple instances of the same application) are used to
control StreamStor cards they must each connect to a unique StreamStor card. The
XLRDeviceFind function returns the number of StreamStor devices found in the
system. The index number cannot be larger than this number. In most cases the
higher value index indicates a card that is on a bus or slot further from the main PCI
bus. The PCI bus number and slot number are available from the
XLRGetDeviceInfo command which can be useful in identifying the appropriate
card in a multi-card system.

C H A P T E R 5 : P C I I N T E G R A T I O N

 87878787

88888888

Operation…

Chapter

C H A P T E R 6 : O P E R A T I O N

 89898989

Operation
The operation of StreamStor for recording data is very similar to the familiar
interface of a tape recorder. The XLRRecord function puts the recorder into record
mode and the XLRStop function ends the recording. Data reading is more like a
traditional computer storage device since the data can be retrieved randomly. The
StreamStor recorder also has a special “wrap” mode to allow continuous recording
past the capacity limits of the disks by overwriting the oldest data.

Data Recording
After getting the base address of the data window using XLRGetBaseAddr, it is
used to setup the DMA hardware on the data acquisition card for direct slave writing
to the StreamStor controller. Because the capacity available on StreamStor is much
larger than the 32 bit PCI address scheme (4 GB) will allow, the system is designed
to ignore PCI addressing and assume any data written within the PCI address range
is data to be recorded sequentially. The actual size of the data window can be found
with a call to XLRGetBaseRange (default: 8MB). The PCI data source card is
required to maintain a destination address within this range. This can easily be
accomplished with DMA chaining or other techniques. For example, the data
acquisition card can be programmed to start at the base address, write 64kB, than
start over again at the base address for the next 64kB, etc.

Recording Data
To start a recording the application must call the XLRRecord function. Once
XLR_SUCCESS status has been returned from this function, StreamStor will record
all data written to its data address range. This function should be called BEFORE
starting the flow of data to prevent overflow on the data source device. The user
application can periodically sample the device status using XLRGetDeviceStatus
to check for errors that occurred during recording. Note that this function call
generates PCI traffic and can impact data transfer bandwidth if used excessively.

Many data acquisition cards have operating modes that allow the capture of a
specific number of data points. Unfortunately, the software does not usually allow
specifying a number larger than a 32-bit integer (4,294,967,295). For this reason it
may be necessary to use the data acquisition card in a “pre-trigger” mode where data
is captured continuously until the trigger and then a specified number of data points
are captured after the trigger. The data acquisition card will then continuously cycle
through its “memory buffer” until receiving the trigger. StreamStor will continuously
record all of the data, however, up to its full capacity. To use the recorder in this
fashion, you should enable the “Wrap” feature in the XLRRecord function so that
StreamStor will overwrite the oldest data if the disk system fills to capacity.

In order to capture the maximum amount of data without overwriting old data the
StreamStor system is designed to “exit” record mode when the disk subsystem is
filled to capacity. The user application can poll the device status using
XLRGetDeviceStatus watching for Recording to go FALSE. A normal

C H A P T E R 6 : O P E R A T I O N

 90909090

XLRStop command should then be used to end record mode. Note that the
StreamStor controller is designed to accept data on the PCI bus even after the disk
subsystem is full to prevent system errors and allow you to shut down the data
source after completely filling the available disk space.

Data Wrap
In some recording applications it is desirable to continue recording past the capacity
of the recording system by overwriting the oldest recorded data. This is sometimes
called “pretrigger” or “circular” recording. The StreamStor system supports this
recording mode by setting the “Wrap” bit in the XLRRecord command. The
recorder will continue to record after the disk capacity is exhausted by overwriting
the oldest data on the disks. Once the recording is finally stopped the
XLRGetLength command can be used to determine how much data has been
recorded. If your data is blocked in anything other than 4 byte blocks, you will need
to index back from the end of the data to find an aligned start point of your data.
Contact technical support for more information on using this feature.

Ending the Recording
If storage wrapping mode has not been enabled, StreamStor will continue to record
data until all recording space has been exhausted or the XLRStop function has been
called. If the XLRStop function is not used, any data written to the StreamStor data
range after space is exhausted will be lost.

If data wrapping has been enabled, StreamStor will continue to record data
indefinitely until the XLRStop function is called. When free storage space has been
exhausted, the system will begin to overwrite the oldest data so that the newest data
is kept.

���� NOTE: A data acquisition system can stop recording by simply ceasing any
writes to the StreamStor data address range. The XLRStop function
should still be used to flush all data to the disk drives and to prepare
for reading of the data.

Data Read
Because operating systems cannot handle the massive file sizes resulting from a long
recording, the SDK provides a read function for retrieving data from the recorder.
The user application must supply a memory buffer sufficient to hold the data
requested. Note that the StreamStor system will have optimum read performance
when reading is performed sequentially from the device.

Read Setup
The StreamStor device must be previously opened with XLROpen before reading
data or performing other operations.

If the recording was done with wrapping enabled (old data may be overwritten), use
the XLRGetLengthPages command to get an accurate count of the bytes
recorded. This number can then be used for indexing into the data.

C H A P T E R 6 : O P E R A T I O N

 91919191

Read Positioning
A structure is used to set the read pointer with a byte-offset count. A high and low
value is used to overcome the 32 bit limitations of some programming
environments.

Reading Data
An XLRRead command is used to request a data transfer from StreamStor to system
memory.

92929292

Disk FIFO…

Chapter

C H A P T E R 7 : D I S K F I F O

 93939393

Disk FIFO
The optional Disk FIFO feature is available on StreamStor 408 and 816 recorders to
provide simultaneous Record and Read functionality. This ability can be used to
capture real-time data streams while simultaneously reading data for processing or
analyzing in a “first-in, first-out” fashion. The StreamStor controller will manage the
internal disk resources to insure an uninterrupted record path while still allowing the
data to be read out in the order received. The disk resources are divided into two
“banks” with a bank dedicated to either the read or write function. The disk banks
are utilized in a double buffering technique to insure an uninterrupted real-time
recording capability. The minimum available capacity is approximately ½ the full
capacity on the 408 and 816 boards.

Setting FIFO mode
The function XLRSetFifoMode is used to initiate FIFO operations on StreamStor.
This function takes a mode parameter that indicates the FIFO mode to enter. The
currently available modes are:

XLR_MODE_DEFAULT – Default StreamStor operating mode.
XLR_MODE_FIFO – FIFO Operating mode.

Other modes will be available in future software releases. Whenever an application
initiates a session by calling XLROpen the recorder will return to the default
operating state.

Recording to FIFO
Once StreamStor has been put into FIFO mode, the standard XLRRecord function
call is used to put the recorder into record mode. Note that the XLRAppend
functionality is not available while in FIFO mode. Data is routed to StreamStor in
FIFO mode in exactly the same manner as in standard mode.

Ending FIFO Record
While in FIFO mode the XLRStop function will cause the StreamStor system to
stop recording and discard all data still left in the FIFO. To retain the data still in the
FIFO you can stop the data-flow from the source card and continue to read until all
necessary data has been read. You may also allow the data source to continue
sending data until all relevant data has been read. StreamStor will indicate a FIFO
Full status (XLRGetDeviceStatus) and automatically stop recording data when
the disk system is at capacity. Even if the data source continues to send data after
the full condition, StreamStor will not record it. Once all data has been read from
the FIFO, the XLRStop function will end record mode and ready StreamStor for
the next operation. Note that the recorder will remain in FIFO mode unless a new
call is made to XLRSetFifoMode to return StreamStor to its default state.

C H A P T E R 7 : D I S K F I F O

 94949494

Reading FIFO data
Reading data from the FIFO is very similar to reading data in default mode. The
function XLRReadFifo is provided to read data sequentially from the StreamStor
system. Data is always read in a “first-in, first-out” fashion. Once the data has been
read from the recorder the space is reclaimed for recording new data. The
XLRGetLength function can be used to determine how much data is currently
available in the FIFO. If a read request is made before enough data is available the
XLRReadFifo function will return XLR_FAIL and the last error will be set to
XLR_ERR_OUTOFRANGE. The XLRStop function should not be used until all
desired data has been read using XLRReadFifo. The data in the FIFO is not
preserved after the XLRStop function has been executed.

C H A P T E R 7 : D I S K F I F O

 95959595

96969696

External Port…

Chapter

C H A P T E R 8 : E X T E R N A L P O R T

 97979797

External Port
Some models of StreamStor include additional connectors and electronics to provide
an alternate method of transferring data into and out of StreamStor. These
additional paths offer several advantages, including:

��freedom from interaction with other devices on an arbitrated bus such as
PCI;

��the reduction or elimination of bus FIFOs that may otherwise be required to
interface with an arbitrated bus;

��full isolation of data path from operating system and computer hardware
facilitates predictable and repeatable behavior;

��better or additional control over timing and other parameters;

��higher bus utilization efficiency due to non-arbitrated nature;

��access to interface signals without risk of crashing host computer;

��higher data rates than the most common PCI busses support; and

��the potential for dual-port operation (simultaneous transfers on both PCI
bus and external ports) while recording or playing back.

C H A P T E R 8 : E X T E R N A L P O R T

 98989898

FPDP
Overview

The FPDP (Front Panel Data Port) external port feature is included on StreamStor
PCI-816XF and PCI-816XF2 controllers. FPDP is a 32-bit synchronous data bus
that allows data to be transferred at high speeds between devices. Simple and low-
cost in its implementation, FPDP supports the necessary flow controls to manage
transfers between devices of different speeds. Sustained speeds up to
200Mbytes/sec are supported on the StreamStor FPDP interface.

In reading the following sections on using this feature, it is important to be familiar
with the American National Standard for Front Panel Data Port Specifications
(ANSI/VITA 17-1998). This manual is intended to clarify StreamStor’s operation as
it relates to the standard, not to educate one on the standard itself. For additional
information about the standard, other FPDP products and manufacturers, and other
technical details regarding FPDP, please visit www.fpdp.com.

The StreamStor FPDP interface is designed to meet and exceed the basic capabilities
of FPDP as defined in the FPDP ANSI standard. The following sections describe:

��any optional FPDP features StreamStor has implemented;

��any features that StreamStor has implemented as a superset to the standard;

��any known deviations form the ANSI standard;

��any clarifications that might otherwise be left open to interpretation; and

��the API functions necessary to configure an external port.

Interface Electronics
Interface electronics and termination values on StreamStor are those recommended
by the ANSI standard, though some signals and terminations can be electronically
connected or isolated with crossbar switching devices in order to support electronic
reconfiguration.

Data Formats
The FPDP is a multi-drop bus intended to carry either framed or unframed data.
StreamStor currently supports only the unframed data mode. The SYNC* (Sync
Pulse) signal is driven to an inactive state while StreamStor is a data transmitter on
the FPDP bus.

Contact Conduant for more information on using framed data.

C H A P T E R 8 : E X T E R N A L P O R T

 99999999

PIO Signals
PIO signals are programmable lines for I/O for user-defined functions. These are
ancillary signals and are not required for the FPDP function. StreamStor currently
does not drive or act on received PIO signals. Contact Conduant for more
information on using PIO signals.

Connector Position
The location of the FPDP connector on the StreamStor board is shown in Figure 3.

Figure 3 - StreamStor FPDP Connector location

Interface Functions
To ready the StreamStor to transfer data using FPDP, the API routine
XLRSetMode must be called, as follows:

 XLRSetMode (device, SS_MODE_EXT);

After StreamStor is in external port mode, an API call to XLRSetFPDPMode is
used to configure the port. This command allows you to set the mode to one of:

��FPDP Transmit Master (FPDP/TM)

��FPDP Transmit (FPDP/T, StreamStor unique)

��FPDP Receive (FPDP/R)

��FPDP Receive Master (FPDP/RM).

��FPDP Receive Master Clock Master (FPDP/RMCM, StreamStor unique)

C H A P T E R 8 : E X T E R N A L P O R T

 100100100100

In FPDP/T mode, StreamStor drives the FPDP DATA, DVALID* (Data Valid),
DIR* (direction), and SYNC* (Sync Pulse) signals but uses the FPDP clock that is
driven to the FPDP bus by some other source. In this mode, StreamStor does not
provide any termination for signals other than DATA1. To use this mode properly,
StreamStor should NOT be positioned at either end of the FPDP bus. Note also
that the maximum useable frequency in this mode will decay more rapidly as the
cumulative distance from the clock source to the data source to the data destination
increases.

In FPDP/RMCM mode, StreamStor acts as a Receive Master, excepting that
StreamStor also drives the FPDP clock signals on the FPDP bus. In addition,
StreamStor terminates the clock signals (PSTROBE, PSTROBE*, and STROB) as
would a traditional FPDP/TM while terminating the remaining signals as would a
FPDP/RM. To use this mode StreamStor should be physically positioned at an end
of the FPDP bus. Note also that the maximum useable frequency in this mode will
decay more rapidly as the cumulative distance from the clock source to the data
source to the data destination increases.

When configuring StreamStor as a recorder, it may be desirable to prevent a
transmitter from sending data until the StreamStor recording function is fully
enabled. XLRSetFPDPMODE can be used to assert the FPDP NRDY* (Not
Ready) signal when StreamStor is activated as a FPDP receiver. NRDY* will remain
asserted until the StreamStor data recording process is ready to proceed. An
example of this is:

XLRSetFPDPMode(device, FPDP_RECVMASTER, SS_OPT_FPDPNRASSERT);

PSTROBE/PSTROBE* and STROB Signals
When in FPDP/TM and FPDP/RMCM modes, StreamStor will drive and
terminate both the differential clock pair of PSTROBE, PSTROBE* (± PECL Data
Strobe) and the single-ended STROB (Data Strobe) TTL clock. When in any other
mode, the user will select which of the two FPDP clock sources StreamStor should
use from the FPDP bus. The clock can be selected by calling XLRSetFPDPMode
with the desired clock option. For example, to enable the data strobe clock (TTL):

XLRSetFPDPMode(device, FPDP_RECV, SS_OPT_FPDPSTROB);

Refer to the FPDP ANSI standard for recommendations and observations about the
use of these signals.

1 StreamStor always provides series termination on the DATA signals as described in Permission 6.4.1 of the ANSI
specification.

C H A P T E R 8 : E X T E R N A L P O R T

 101101101101

Operating Frequency Range
In either FPDP/TM or FPDP/RMCM mode, StreamStor can be programmed to
synthesize a bus clock in the range from 6 to 50MHz. StreamStor can operate from
FPDP clocks supplied by other sources at frequencies down to DC. Note, however,
that the ANSI specification limits the clock to 20MHz if a receiver is using the
STROB (Data Strobe) clock. To program the clock, use the API function
XLRSetPortClock. By default, the clock frequency is 8MHZ.

101010102222

If You Have Problems…

(303) 485-2721

support@conduant.com

www.conduant.com

Chapter

C H A P T E R 9 : I F Y O U H A V E P R O B L E M S

Help Us Help You
Conduant wants to be sure that your StreamStor system works correctly and stays
working correctly. In the unlikely event, however, that you are unable to get your
new system to work properly, or if a working system ceases to function, we will do
all that we can to get your system back online.

Solving the problem is largely a matter of data collection and steps that must be
taken one at a time. In order for us to better serve you, we ask that you take the time
to perform the following steps prior to calling us. This way, you can provide us with
the most meaningful information possible that will help us solve the problem.

Is the problem one that obviously requires replacement parts due to physical damage to the system? If
yes, then please gather the information described below and report the problem to tech support, by
phone or through the web site.

Have you confirmed that no cabling has been inadvertently disconnected or damaged while working
around the equipment?

Is the card properly seated in the PCI slot?

Do all the disk drives have good power connections and voltages?

Does the confidence test in sscfg.exe run OK?

Has the software installation been corrupted? Try re-installing software.

Have you checked the Conduant Web site for technical bulletins?

Have you checked the Software Update page in the Conduant Web Site to be sure that your software
is fully up to date? If your software is down level, you may want to update it to determine if this fixes
the problem.

If the above steps did not resolve the problem, then please call Technical Support or
contact them through the web site. Please provide the following information:

∗ StreamStor Card Serial Number

∗ Software Revision(s)

∗ Configuration (308,816,816XF, disk drive model numbers, etc.)

∗ Description of third party equipment that StreamStor is working with (i.e.
Manufacturer and model numbers, etc.)

C H A P T E R 9 : I F Y O U H A V E P R O B L E M S

∗ Description of third party software being used with StreamStor.

∗ Computer model and type (Pentium, Pentium II, etc.)

∗ Operating system version.

We will do all that we can to resolve the problem as quickly as possible.

Contacting Technical Support

E-mail: support@conduant.com

Phone: (303) 485-2721

Fax: (303) 485-1247

Web: www.conduant.com

Mail: Conduant Corporation
 Technical Support
 1501 South Sunset Street, Suite C
 Longmont, CO 80501

www.conduant.com

C H A P T E R 9 : I F Y O U H A V E P R O B L E M S

A P P E N D I X A – E R R O R C O D E S

 106106106106

Appendix A – Error Codes
If you are experiencing one of these errors and are unable to determine the cause, please contact
Conduant technical support for assistance.

Number Error Title Description
2 XLR_ERR_NODEVICE StreamStor device was not found in

system.
3 XLR_ERR_NOINFO Undefined error occurred.
4 XLR_ERR_WDOPEN Cannot open device driver.
5 XLR_ERR_SYSERROR The controller reported a system

error.
6 XLR_ERR_NOXLR No StreamStor cards located.
7 XLR_ERR_INVALID_CMD An invalid command was received by

the controller.
8 XLR_ERR_HANDLE Invalid handle.
9 XLR_ERR_DMAREADFAIL A DMA read failure occurred.
10 XLR_ERR_SYSTATUS Request is incompatible with

current system status.
11 XLR_ERR_NOCMDSTATUS The command did not complete.

Communication with controller
timed out.

12 XLR_ERR_DMAINCOMPLETE The data transfer timed out and
did not complete.

13 XLR_ERR_APPSTART The controller failed to
initialize RAM application.

14 XLR_ERR_OUTOFMEMORY The DLL failed to allocate
sufficient memory.

15 XLR_ERR_WIN32FAIL A Win32 API failure occurred.
16 XLR_ERR_WRITENOTACTIVE System not ready to receive data.
17 XLR_ERR_WDVERSION Incorrect driver version detected.
18 XLR_ERR_OPENHANDLE Device reference by handle already

opened.
19 XLR_ERR_INVALIDINDEX Invalid card index value.
20 XLR_ERR_DEVICELOCK Could not lock device for

exclusive access.
21 XLR_ERR_DETECTCARD Card configuration invalid.
22 XLR_ERR_BUFLOCK Could not lock user memory buffer.
23 XLR_ERR_READFAIL Data read error.
24 XLR_ERR_WRITERAM Firmware write to device memory

failed.
101 XLR_ERR_INVALID_LENGTH An invalid or unaligned transfer

length was requested (must be 32

A P P E N D I X A – E R R O R C O D E S

 107107107107

bit aligned).
102 XLR_ERR_SYSBUSY System is busy. Use XLRStop to

before sending other commands.
103 XLR_ERR_CMDFAIL The controller has failed to

execute the command.
104 XLR_ERR_FILENOTFOUND A required file was not found.
105 XLR_ERR_LOADKEY A required registry key was not

found.
106 XLR_ERR_DLDCHECKSUM A required file is corrupted or

upload failed.
107 XLR_ERR_DRVFAIL A disk drive is failing to

respond.
108 XLR_ERR_NODRIVER Device driver not found or device

already open.
109 XLR_ERR_FIFO_INACTIVE Invalid command, FIFO inactive.
110 XLR_ERR_INVALIDVR An unconfigured or invalid VR was

selected.
111 XLR_ERR_NOTENABLED Optional feature not enabled.
112 XLR_ERR_OUTOFRANGE Request was not in the recorded

data range.
113 XLR_ERR_NOTINFIFO Command valid only in FIFO mode.
114 XLR_ERR_KERNELMEM Unable to allocate kernel memory.
115 XLR_ERR_INTENABLE Unable install device interrupt.
116 XLR_ERR_READCOLLISION Attempt to start multiple reads

from single thread.
117 XLR_ERR_READIDLE Attempted to check status on non-

existent read request.
118 XLR_ERR_FIFODRIVES Current drive configuration

incompatible with FIFO mode.
119 XLR_ERR_FWVERSION Hardware firmware incompatible

with API version.
120 XLR_ERR_OSFAIL A system call failed.
121 XLR_ERR_THREADCREATE Process thread creation failed.
122 XLR_ERR_EXPECTEDDISKS_

MATCH
The number of expected disks
doesn’t equal the actual number of
disks.

123 XLR_BOARDTYPE Unknown board type found.
124 XLR_ERR_FULL Insufficient disk space.
127 XLR_ERR_INVOPT Invalid option value.
142 XLR_ERR_INVALID_

PORTMODE
Port in wrong mode for this
operation.

143 XLR_ERR_NOAPPEND Attempt to delete non-existent
append

144 XLR_ERR_EMPTY No data.
153 XLR_ERR_CANNOT_RECOVER

_DATA
No recovery of data possible.

154 XLR_ERR_NO_RECOVERABLE
_DATA

No recoverable data.

A P P E N D I X A – E R R O R C O D E S

 108108108108

155 XLR_ERR_BAD_DISKSET A disk is missing from a recording
or a disk is mounted that was not
part of the set when the recording
was originally made.

156 XLR_ERR_INVALID_PLAY
_LENGTH

Playback length is beyond the end
of the recording or is not aligned
on an eight byte boundary.

A P P E N D I X A – E R R O R C O D E S

 109109109109

End of Document

	About the StreamStor System
	What you need to get started
	Software Programming Choices
	Unpacking
	Controller Board
	Disk Drives

	Components
	Planning Your Installation
	Hardware Installation
	Controller Card
	Drive Configuration
	Installing the Drives
	Connecting Interface and Power Cables
	Drive auto configuration

	Installing the Software
	Introduction
	Software Components
	Device Driver
	Support files
	Windows Uninstall
	Windows Configuration/Test Utility
	Windows Fetch Utility
	Windows Library
	Linux Library
	API Functions
	Data Structures

	PCI Integration
	Initialization and Setup
	PCI Bus Interfacing
	Multi-Card Operation

	Operation
	Data Recording
	Recording Data
	Data Wrap
	Ending the Recording

	Data Read
	Read Setup
	Read Positioning
	Reading Data

	Disk FIFO
	Setting FIFO mode
	Recording to FIFO
	Ending FIFO Record
	Reading FIFO data

	External Port
	FPDP
	Overview
	Interface Electronics
	Data Formats
	PIO Signals
	Connector Position
	Interface Functions
	PSTROBE/PSTROBE* and STROB Signals
	Operating Frequency Range
	support@conduant.com
	www.conduant.com

	Help Us Help You
	Contacting Technical Support

