% Fermilab PN440

— Vx Tools Support Package

S. Kent
R. Rechenmacher
D. Slimmer
M. Vittone
G. Zioulas
Online Support

Fermilab
September 16, 1994

Abstract

The vx_tools support package is a conglomeration of generic and target specific
routines disseminated into appropriate target directories.

Keywords: VME VxWorks vx_tools

Copyright © 1992 by Universities Research Association, Inc.

This documentation was prepared with IATRX.

Copyright © 1992 by Universities Research Association, Inc.
All rights reserved.

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

Motorola and the Motorola symbol are registered trademarks of Motorola, Inc.
TEX is a trademark of the American Mathematical Society.

VxWorks is a trademark of Wind River Systems, Inc.

Contents

1 Vx Tools
1.1 Imtroduction e
1.2 How to build the software oo o
1.3 How to distribute the software 0.

I Generic Libraries and Routines

2 Calendar Clock

2.1 Time Structure and External Variables
2.2 Calendar Time Routines Lo
2.3 Initialization Routines o oL
2.4 Calendar Device Driver Routines
25 Usage e e
3 Tools
3.1 Auto Stack Checking o o
3.1.1 Auto Stack Checking Modes
3.2 Socket Cleanup e e
3.2.1 Cleanup Reboot Modes,
3.3 TRACE facility e
3.3.1 Imtroduction
3.3.2 Using Trace e
3.3.3 Controlling Trace
3.3.4 Special Functionality oo o

iii

B W = e

10
11
13
13

4

11

DVX Dart VxWorks eXtensions

4.1 Introduction to DVX task variables
4.2 Loading thedvx package o
4.3 Task variable functions: Internals

4.3.1 Task creation and deletion L oL
4.4 Task variable functions: User Interface
45 Codeexample L

Target Specific Libraries and Routines

MVME167 Supplement

5.1 Interrupt Routines
5.1.1 routines
5.1.2 routines description Lo
5.1.3 example

5.2 Simple Timing L e
5.2.1 routines L
5.2.2 macros. Lo e e e e e e e e
5.2.3 example oL

5.3 VME Mapping Routines 0oL
5.3.1 routines L

5.4 DMA Routines e
5.4.1 routines

5.5 Readout routines Lo
5.5.1 routines forreading EBIs L.
5.5.2 example

5.6 VME Interrupts. e
5.6.1 handler L
5.6.2 generator

5.7 General Interrupts L L oL

5.8 Address Translation / Cache Mode Control
5.8.1 routines

5.9 Routine Summary L e

v

22
22
23
23
24
25
28

33

devel Release Notes

Al bugreports e e

v1_3 Release Notes

B.1 flavor M68k
B2 flavor R3k
B.3 New Features e

v1_3_1 Release Notes
C.1 flavor MB8k e e e e

v1_4 Release Notes
D.1 flavor M6B8Kk e e

v1_5 Release Notes
E.1 flavor M68Kk e e

v1_6 Release Notes
F.1 flavor M68Kk e e

54
54

55
55
55
55

56
56

57
57

58
58

59

Chapter 1

Vx Tools

1.1 Introduction

The vx_tools package is a conglomeration of useful code to supplement the VxWorks pack-
age. This package provide generic and target specific code that resides in a common user
package. vx_tools depends on VxWorks product: two versions of VxWorks are currently
supported , v6_0_2 and v5_1_1; to manage the co-existence of both versions two separate
databases have been defined. To setup the desired version of vx_tools product, the user
needs first to do the following:

% setup vxprods to setup the version built against
VxWorks v5_0_2

or

% setup -n vxprods to setup the version built against
VxWorks v5_1_1

There are two flavors of this product. The M68k flavor provides a supplement package
for the Motorola MC68000 series of processors. The R3k flavor provides a supplemental
package for the LR3000 series processors.

% setup -f M68k vx_tools
or

% setup -f R3k vx_tools

Setting up the product, the environmental variable VX_TOOLS_DIR is defined, pointing
to the product root directory, to help the user moving around in the directory tree.

The vx_tools directory structure is divided among a generic ”all” subdirectory and var-
ious target specific directories. The ”all” subdirectory contains generic source files, headers
files, documentation files, and makefile scripts. This product contains a generic header file
"vx_tools.h” that includes global definitions for NVRAM partitioning, and conditional in-
clude on one of the various hardware definition header files as defined in the compilation
options of makefile.

The vx_tools directory structure is as follows:

$VX_TOOLS_DIR/

all/ Generic
bin/
IRIX/
Sun0S/
doc/ (eg. pn440.tex, pn440.ps)
include/ (eg. vx_tools.h)
lib/
src/ (eg. makefile, premake)
target/ Specific
include/
lib/
src/
ups/

The target subdirectory tree exists for example for the following targets:

mv147

e mv167

pcda (for vx_tools versions greater then v1_4)

e pcd (for vx_tools versions up to v1_4)

The §VX_TOOLS_DIR/all/include/vx_tools.h header file contains global definitions for
the NVRAM partitions. The NVRAM is part of the battery backup calendar clock device
that is common among the Targets. These devices include the DS1386 (Dallas Semicon-
ductors), MK48T02, and the MK48T08 (SGS-Thomson). These devices provide from 2K
X 8 to 8K X 8 bytes of NVRAM.

1.2 How to build the software

The user can either separately build different components of the vx_tools package or the
entire package itself. The building is done basically through the use of three files: build,

premake and makefile. Different parameters can be passed to allow for different platforms,
CPU types and also to reflect which VxWorks version should be used to build against.
The three files reside under the §VX_TOOLS_DIR/all/src area.

Some examples on how to invoke the build command follow:

The general syntax is:

% build target vx_version

where :
target can be "all" to build the entire product, "tod" for time
of the day etc.
vx_version refers to the VxWorks version to use:
v5_0_2b, v5_1_1 etc.
example:

% build sup v5_1_1

In this case build will invoke premake to build the supplement library for the MO-
TOROLA MVME167 running under version v5_1_1 of VxWorks. Then premake will in
turn invoke make.

Since the large number of targets to build, the user should refer to the build,premake
and makefile files for a complete and detailed description.

1.3 How to distribute the software

The vx_tools product is maintained on the OLS unix cluster and when new versions are
released they are put in the fnsg0Ol kits database. When retrieving a new version the
user/distributer should notice that in the kits database, the flavor is declared with the
following conventions:

VxWorksM68k_5.1.1 for the version built under
VxWorks vb_1_1

VxWorksM68k for the version built under
VxWorks v5_0_2b

VxWorksR3k for the version built under
VxWorks R3000 for the IRIX.

Part 1

Generic Libraries and Routines

Chapter 2

Calendar Clock

The calendar library provides time and date functions. The tm structure and externals are
provided in the $VX_TOOLS_DIR/all/include/timevw.h file. The time routines provide
access to the battery backup calendar device.

2.1 Time Structure and External Variables

o typedef time_t long;

e struct tm {
int tm _sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm _year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

extern long timezone;

extern long altzone;

extern char *tzname[];

extern int daylight;

The tm structure includes the following fields:

int tm_sec; /* seconds: range 0..59 */

int tm_min; /* minutes: range 0..59 */

int tm_hour; /* hours since midnight: range 0..23 */
int tm_mday; /* day of the month: range 1..31 %/

int tm_mon; /* month: range Jan==0..11 */

int tm_year; /* year: with 0==1900 */

int tm_wday; /* dayOfWeek: range Sun==0..6 */

int tm_yday; /* day0fYear: 0..365 */

int tm_isdst; /* !zero implies daylight savings */

The timezone, altzone, and tzname|] variables are initialized with the local timezone data.
A call to localtime() invokes an internal routine tzset() that determines the value of the
daylight variable.

2.2 Calendar Time Routines

e time t time(time_t *);
e char *ctime(const time_t *);
e char *asctime(const struct tm *);
e struct tm *gmtime(const time_t *);
e struct tm *localtime(const time_t *);
e int stime(time_t *);
e time t mktime(struct tm *);
e int date(void);
The calendar time routines provide date and time information from the on board time
of day device available on many target modules.
The time() function returns the number of seconds since Jan 1, 1970 (Day 0, Unix Epoch).
The asctime function returns the time as ASCII string.
The gmtime function converts the time_t time into the tm structure.
The localtime function is like gmtime but it corrects for time zone.
The stime function sets the time.
The mktime function reconstructs a local time value.

The date() function displays the current date and time represented as both GMT, and local
time.

10

2.3 Initialization Routines

int tod.initial(void);
e int tod setlocal(INT32 yymmdd, INT32 hhmmss);

e int tod_setgmt(INT32 yymmdd, INT32 hhmmss);

int tod_show_tzrules(void);

int tod_get_tzrules(void);

int tod_set_tzrules(

INT32 tz_hhmm,

INT32 atz_hhmm,

INT32 atzBegin_.mmddhhmmd,
INT32 atzEnd mmddhhmmd,
char *tz_name,

char *atz_name);

The initialization routines allow the setting of date, time, and read/write access to the
timezone data in NVRAM.

The tod.initial() routine reads the timezone data from NVRAM and sets the timezone,
altzone, tzname|], and tzrules variables. This routine should be invoked after a reboot.

The tod_setlocal() and tod_setgmt() routines allow the setting of calendar date and time
using either local time or GMT time. The argument yymmdd implies a decimal format using
2 digits fields to represent the year, month, and day as an integer. The argument hhmmss
implies a decimal format using 2 digit fields to repersent the hours, minutes, and seconds
as an integer. (Do not modify the date and time between daylight savings transition. The
results may be unfavorable.)

Usage: (decimal)
tod_setlocal (yymmdd, hhmmss) ;
tod_setgmt (yymmdd, hhmmss);

yy = year
mm = month (01..12)
dd = day (01..31)
hh = hour (00..23)
mm = minute (00..59)
ss = second (00..59)
Example:
Set date and time to April 1, 1993, 2:30 P.M. local time.

tod_setlocal(930401,143000)

11

The tod_show_tzrules() and tod_get_tzrules() routines display usage and verification of the
tzrules and data.

The tod_set_tzrules() routine writes timezone data into NVRAM. The rules allow an
exact date or a conditional day of the week transition for daylight savings. This routine
need only be executed once when a new module has it Ethernet address installed. Other
reasons to execute this command are a physically move of the module into a new timezone
or corrupted NVRAM.

Zone Format: +/- hhmm (+East, -West GMT)
hh = hours (0..23)
mm = minutes (00..59)

Conditional Format: altzoneBegin / altzoneEnd mmddhhmmd

mm = Month (1..12)
dd = Day (01..31) / (00,01)first/last
hh = Hour (00..23)
mm = Minute (00..59)

d = DayOfWeek O=ExactDate / (1..7)conditional
Sunday=1, Saturday=7

The ’dd’ and ’d’ fields provide a conditional set of rules to
cause daylight transitions to occur on the first or last (week
of the month) specific day of the week, or an exact date.

Rules:

mmddhhmm0 daylight transition on exact day (dd)
mmOOhhmml daylight transition first Sunday of the month
mmOlhhmml daylight transition last Sunday of the month
mmOOhhmmO GMT time only, rules ignored

Example:

Set the timezone for central USA with daylight savings

transition starting on the first Sunday in April, ending

on the last Sunday in October (timezone CST = GMT-6HrsOMin;

altzone CDT = GMT-5HrsOMin)
tod_set_tzrules(-600,-500,40002001,100102001,"CST","CDT")

Default:

tod_set_tzrules(0,0,0,0,"GMT"," ")

12

2.4 Calendar Device Driver Routines

e void tod_device_id(void);

e void tod_device_on(void);

e void tod_device_off(void);

e time_t tod_device_read(struct tm *);

e time_t tod read(void);

e void tod._device_write(const struct tm *);

e void tod_write(time_t timer);

These routines access the hardware directly. The calendar devices can be switched off to
extend battery life when the module is in storage. The read routines convert the 8 bit
BCD time and date representation of the device into decimal. The write routines converts
a decimal representation of time into the device 8 bit BCD representation.

2.5 Usage

e libtod_"targetboard” ”devicedriver”.a

e tod_ "targetboard” ”devicedriver”.o

A library file and downloadable object file is created for the specified target board and
device driver. Currently, the target board and device driver is appended to the library
filename. The object file may be downloaded directly to the target board to provide access
to these routines.

The FSCC time of day object may be downloaded to any PC4 FSCC.
the file is $VX_WORKS_DIR/pc4/lib/tod_fsccDS1386.0

At the VxWorks prompt '"->"
-> cd "/usr/products/Sunl0S/vw/vx_tools/devel/pc4/lib"

value = 0 = 0x0
-> 1d < tod_fsccDS1386.0
value = 0 = 0x0

-> tod_initial()

value = 0 = 0x0

-> date()

Thu Apr 1 20:30:00 1993 GMT
Thu Apr 1 14:30:00 1993 CST
value = 0 = 0x0

13

Chapter 3

Tools

The vx_tools object file contains a variety of useful routines. The stack checking routines
provide an automatic overflow test of the VxWorks tasking facility. The socket cleanup
routine shuts down network connections prior to calling reboot (which kills the network
and transfer control to boot ROMs). The cleanup routine has limited use.

3.1 Auto Stack Checking

e STATUS autoStackCheck(int Mode);

e void autoStackShow(void);

The autoStackCheck routine is used to add or remove a global stack check hook on tasks.
The stack check routine tests the end of the interrupt stack for overflow. It then continues
to check the local stack for overflow. Any error messages are sent to the log message queue.

3.1.1 Auto Stack Checking Modes
¢ AUTOSTK_NORMAL (0)
o AUTOSTK_SWITCH (1)
o AUTOSTK_DELETE (2)
¢ AUTOSTK_CREATE (4)

The AUTOSTK_NORMAL mode removes any stack check hooks associated with tasks.
This is the default setting.

The AUTOSTK_SWITCH mode adds the hook routine AutoStackSwiCheck() that

checks the stacks when tasks are switched.

14

The AUTOSTK_DELETE mode adds the hook routine AutoStackDelCheck() that
checks the stacks when a task is deleted.

The AUTOSTK_CREATE mode adds the hook routine AutoStackCreCheck() that

checks the stacks when a task is created.

3.2 Socket Cleanup
e STATUS cleanup(int Mode);

The socket cleanup is of limited use. This routine does not address the closing of sockets
on a power cycle, a power glitch, a front panel reset, a hung module, invoking reboot() or

a Ctrl X.

3.2.1 Cleanup Reboot Modes
¢ BOOT_NORMAL (0)
¢ BOOT_NO_AUTOBOOT (1)
¢ BOOT_CLEAR (2)
¢ BOOT_QUICK_AUTOBOOT (4)

The reboot definitions and explanations are taken out of the VxWorks Reference Manual
(see rebootLib for more detail).

3.3 TRACE facility

3.3.1 Introduction

TRACE is a debugging aid to trace execution of code through printed information in a
similar fashion as using printf’s statements. The programmer should include TRACE calls
at points in the code that represent execution of significant functionality or at critical
timing points. TRACE is designed to have minimal impact on the real-time aspects of
the software and therefore TRACE is not meant to be inserted for debugging and removed
for production. TRACE should be included in development, added during debugging and
kept (for the most part) for production. The print out from TRACE will contain timing
information.

15

3.3.2 Using Trace

TRACE is currently implemented for Vxworks on the MVME167.

As mentioned in the introduction, trace is similar to adding printf’s to the code except
that trace can be ”"controlled.” TRACE can either print messages to the your terminal or to
your terminal and the console (if not the same) or to a circular queue in memory. TRACE
can be enabled (for printing) on a per task basis.

TRACE uses taskCreateHookAdd(), taskDeleteHookAdd(), and taskVarAdd() vxworks
functions to facilitate per task functionality. In addition to task TRACE-ing, functions that
are common to multiple tasks can be given their own pseudo task id to enable TRACE-ing
of a particular function.

A very significant aspect of TRACE is that the user can have two MVME 167 boards
in the same crate, and use one to trace what happended in the other in the case of a crash
for which the second board is hung.

Within each task, individual ”levels” can be enabled/disabled to allow the debugger to
TRACE only what requested.

An example of how TRACE looks in code is:

event_worker_task()

{
while (1)
{
msgQReceive(evnt_q, &evnt_ptr, sizeof(evnt_ptr), WAIT_FOREVER);
TRACE(1, "Received event 0x%x", evnt_ptr, 0);
check_event();
if (log_event) log_event();
}
}
check_event ()
{
if (event_looks_like_this)
{
TRACE(2, "checking event that looks like ---", 0, 0);
}
else
{ TRACE(2, "checking event that looks like +++", 0, 0);
}
}

16

log_event()
{

TRACE(2, "logging event", O, 0);
}

The first parameter to the TRACE macro is the level. The TRACE printout has inden-
tation corresponding to the level. Although the value of level is arbitraty, it is recommended
that the levels be determined by thinking of the stack level at which the call is most likely
to occur at. For recursive functions, level can be a variable that is shifted. Level is actually
a bit mask such that only 32 levels are valid. ((1vl&0x80000000)?1lvl:lvl<<1) could be used
in a recursive function.

The second parameter is a printf style string without an ending newline. The string can
contain formatting for up to two variables. The remaining two parameters are to fill the
variable formatting in the second parameter. If they are not needed, they should be 0’s.

3.3.3 Controlling Trace

The first step in using TRACE is to call tracelnit(): it creates a traceTask that displays
trace messages to the terminal for the task issueing the TRACE call when the trace mode
is set to 4 (see below).

Only tasks created after tracelnit has been called are ready for TRACE control. Func-
tions are made ready for TRACE-ing by including the macro TRACEPROC(name) as the
first line after the declarations if the function (as this macro includes a static declaration).

tracelnit(int circ_que_entries, int max tasks, unsigned int traceclk);

Arguments:

circ_que_entries

max_tasks

traceclk The address of (or pointer to) the register
timer. In the case of the MVME167 and if the proper
vxworks includes are used, the values for traceclk
can be PCC2_TIMER2 CNT, PCC2.TIMER1_CNT,
VMECHIP2 TTCOUNT2, VMECHIP2_ TTCOUNT1, or 0 which will
use VMECHIP2_ TTCOUNTI.

17

After tasks and functions are ready for TRACE-ing, the following
commands can be used:
tracelnfo()

Arguments:

tracelnfo lists tasks and functions ready for TRACE-ing. Also lists the current trace
level mask. The mask is changed by the following commands.

traceOn(unsigned int tid, unsigned int 11, unsigned int 12);

Arguments:
tid Task ID.
11 level to be set.
12 level to be set.

traceOn uses the task Id tid listed in tracelnfo() or as returned by the vxworks command i(). 11 and 12 are u:

e If [1 < (2 a range is set.
o If /1 > [2 just 11 and 12 are set as separate levels.

o If 11 = 12 just 11 is set.

The valid range for 11 and 12 is 0 to 31.

traceOff(unsigned int tid, unsigned int 11, unsigned int 12);
same as traceOn() except it resets the specified level(s).

traceGlobalOn (unsigned int 11, unsigned int 12);
traceGlobalOff (unsigned int 11,unsigned int 12);

Arguments:
11 level to be set/reset.
12 level to be set/reset.

They affect tracing of all tasks and functions.

18

traceMode(int mode);
It selects different modes for tracing.

Arguments:
mode trace mode setting:
mode=0 ==> TRACE-ing disabled
mode=1 ==> print to terminal using printf
mode=2 ==> use logMsg for printing
mode=3 ==> print to circular buffer
mode=4 ==> send msg to traceTask which will use printf

traceShow(int delta_or_abs_time);
It displays TRACE messages printed to the circular queue.
This is only applicable for traceMode set to 3.

Arguments:
delta_or_abs_time If = 0 ==> displays absolute time
If = 1 ==> displays delta time

traceRemoteShow(int delta_or_abs_time, unsigned int slave_base_addr, 0);

Same as traceShow, except will search over VME starting at slave_base_addr and continuing for 32 meg for a

For example, if the 167 VME address over the bus is 0x90000000:

vx_prompt> traceRemoteShow 0,0x90000000,0
the output will be:

set traceRemoteInfoBlockAddress to 91f4b854
traceRemoteInfoBlockAddress is 91f4b854

0 0 dscSCD_ISPScroll: enter

7 0 dscSCD_ISPScroll: enter
16635 0 dscSCD_ISPScroll: enter
16642 0 dscSCD_ISPScroll: enter
vX_prompt>

next call would be:

19

vx_prompt> traceRemoteShow 0,0x90000000,0x1f4b854

in which the offset is given as an intermal offset from the beginning of the
memory (offset O == 0x90000000) and not as an absolute address over the VME bus.

traceReset(); this function clears the circular que;

tracelnit(circ_que_entries, max_tasks, traceclk);

3.3.4 Special Functionality

For the case where tasks are created and deleted in real time such that traceOn cannot
be executed in a timely manor, the trace levels 15-31 default to on. This fuctionality can
be taken advantage of when debugging a procedure interactively. If trace levels 15-31 are
use and a procedure is activated from the shell using sp(), TRACE-ing will automatically
commense if the traceMode is not zero. If trace levels 15-31 would not normally be used,
one of several tricks that come to mind could be used to temporarily shift the trace level
up into that range.

EXAMPLE PRINT OUT FROM traceShow

vx_prompt> traceShow

0 0 (null) dscSCD_ISPScroll: enter

7 0 (null) dscSCD_ISPScroll: enter
16635 0 (null) dscSCD_ISPScroll: enter
16642 0 (null) dscSCD_ISPScroll: enter
33268 0 (null) dscSCD_ISPScroll: enter
33276 0 (null) dscSCD_ISPScroll: enter
49900 0 (null) dscSCD_ISPScroll: enter
49910 0 (null) dscSCD_ISPScroll: enter
66538 0 (null) dscSCD_ISPScroll: enter
66545 0 (null) dscSCD_ISPScroll: enter
83172 0 (null) dscSCD_ISPScroll: enter
83180 0 (null) dscSCD_ISPScroll: enter
99807 0 (null) dscSCD_ISPScroll: enter
99814 0 (null) dscSCD_ISPScroll: enter
116441 0 (null) dscSCD_ISPScroll: enter
116449 0 (null) dscSCD_ISPScroll: enter

(16) press q to quit, any other key to continue...

The first column is the value read from the timer. The second column is the task id (it
may be 0 if ISP). The third column is task name or name given in TRACEPROC(name)

20

macro. The forth column is the message string given in the TRACE macro indented by the
level.

A common way to look at trace circular queue information is to redirect the output to a
file onto a disk that is cross-mount on a host computer where the file can then be browsed
or printed out. Use:

traceShow > somefile

making sure that you have permission to create the file. Note that the output will only
pause every sixteen lines if NOT redirected.

21

Chapter 4

DVX Dart VxWorks eXtensions

4.1 Introduction to DVX task variables

Dart VxWorks eXtensions provides the user with an alternative way of creating and han-
dling task variables.

The user can create two types of task variables: scalar and pointers. Upon variable
creation the user is returned a handle for it that can be subsequently use to identify the
variable itself. The task private data are stored in an array of structures that are task
specific. The handles are globally known in the system and the bookeeping is maintained
through an array whose elements have the handles value as indexes and the handles pointers
as values.

Only one VxWorks task variable is used in the system , for each task, and it is the
pointer to the task private data array of structures.

e scalars : the user can create, set a value and retrieve the task variable.

e pointers: the user can create and retrieve a pointer to a wanted malloced space: he
simply needs to specify the size for it and the malloc operation is internally done.
Upon task deletion the malloced space is freed automatically.

The user is also provided by an exit handlers mechanism that supports the atexit func-
tion implemented for VxWorks with the same functionality as on a UNIX system. The exit
handler implementation exists as a layer above the DVX task variables and is implemented
using the DVX task variables; however, it is also available using the VxWorks task variables.
The implementation is completely trasparent to the user.

Besides the "UNIX” style atexit, the user is also provided with another exit handler
mechanism that allows to pass an integer variable to the user exit handler; this turned
out to be a need under VxWorks to be able to access task variables from within the exit
handler. This is because, differently from UNIX, the exit handler is not executed in the

22

context of the task that registered the exit handler itself, so if the user wants to access his
task variables, the only safe way is to pass the task ID to the exit handler and the task ID
would be the integer variable to pass to the handler when registering it with the dvx_atexit
call.

As a reminder, the standard atexit call does not allow any argument to be passed .

4.2 Loading the dvx package

The manager for the system is responsible to load the dvx object library that contains the
proper DVX object modules. Two object files are available according to the user’s need
whether to write an application that uses the atexit call and strictly dvx task variable or
atexit and VxWorks task variables:

$VX_TOOLS_DIR/mv167/lib/dvx_var_dvx.o
$VX_TOOLS_DIR/mv167/lib/dvx_var_vxw.o

The load and the initialization should be automatically done through a startup script
at startup time (or boot time) of the VxWorks system ; the DVX task facility is created
and initialized simply invoking:

dvx_setup
At this stage, using the VxWorks task hook library, the hooks executed at each task

creation and deletion are created. The delete hook code is the one that will invoke the
functions registered by the user via the atexit and/or the dvx_atexit call.

4.3 Task variable functions: Internals

The function prototypes and structures are defined in the file

$VX_TOOLS_DIR/mv167/include/dvx.h In the same files the "arbitrary” maximun number
of dvx task variables allowed for the system is set to 100; the maximum number of exit
handlers registered through the atexit call is set to 32 just to conform with the UNIX value.

STATUS dvx_setup()

This function is called only once at startup time:
it is called by the system.

It initializes the task variable and hook facilities;
it registers hooks for task creation and deletion.
It creates and initializes the tag array of global

23

indexes that will be used to register the number of
dvx task variables in the whole system.

4.3.1 Task creation and deletion

When a task is created the hook dvx_task hook _create is executed; at task deletion dvx_task_hook_delete
will be invoked.

static void dvx_task_hook_create (WIND_TCB *taskPtr)

This function will be called by the system at each task creation.
It allocates the space for the task private data

array of structures and the pointer to it is stored

as a VxWorks task variable .

It allocates the space for the exit handlers using either

code based on DVX task variables or code based on

VxWorks task variables.

Arguments:
WIND_TCB *taskPtr
Task id, the pointer to the Task Control Block.

static void dvx_task_hook_delete (WIND_TCB *taskPtr)

This function will be called by the system at each task deletion.
It invokes the task specific exit handlers previously
registered with the atexit call.
It also frees space that was malloced for internal
use and for user’s specific purposes.
Arguments:
WIND_TCB *taskPtr
Task id, the pointer to the Task Control Block.

STATUS dvx_validate_handle (int handle, int handle_flag, int tId)

This function is used internally to validate the handle
assigned to a DVX task variable.

24

Arguments:

int handle Task variable handle
int handle_flag To distinguish whether the handle is being

created or being used to set/retrieve a task variable.
int tId Task ID as returned , for example by the call to

4.4 Task variable functions: User Interface

The user who is going to create a task using the DVX task variable facility should first check
that the DVX package has been initialized in the system. This can be done either from the
VxWorks shell or within the application code simply calling the function dvx_init_verify.
An error message is returned in case DVX was not started up.

STATUS dvx_init_verify() This function returns either 0 (OK) or an error message.

As previously mentioned, the user is provided with functions to create and manipulate
DVX task variables:

e STATUS dvx_create_scalar (int tId, int *usrHandle);

STATUS dvx_set_scalar (int tId, int usrHandle, int varVal);

STATUS dvx_get_scalar (int tId, int usrHandle, int rdVar);

STATUS dvx_create_ptr (int tId, int *usrHandle, int size, DVX_PTR **usrPtr);

STATUS dvx_get_ptr (int tId, int usrHandle, DVX_PTR **usrPtr);

STATUS dvx_create_scalar (int tId, int *dvxHandle);

To create a scalar type of task variable.

Arguments:
int tId Task ID as returned , for example by the call to
taskIdSelf();
int usrHandle Task variable handle: the user supplies a location
for it and the functions stores in it an available one;
If the handle address already contains a valid handle

25

its value is returned.

STATUS dvx.set_scalar (int tId, int usrHandle, int varVal);

To set a value to the task variable.

The user passes the previously created handle to access
the task variable and to set a value; it returns OK if the
handle is valid or an error message if not.

Arguments:
int tId Task ID as returned , for example by the call to
taskIdSelf();

int ustrHandle Task variable handle.
int varVal Task variable value to be set.

STATUS dvx_get_scalar (int tId, int usrHandle, int *rdVar);

To retrieve the value assigned to the task variable.

The user passes the previously created handle to access
the task variable and its value is stored in rdVar;

it returns OK or an error message

if the handle is not valid .

Arguments:
int tId Task ID as returned , for example by the call to
taskIdSelf();

int ustrHandle Task variable handle.
int *rdVar Pointer to store returned vavariable value

STATUS dvx_create_ptr (int tId, int *usrHandle, int size, DVX_PTR **usrPtr);

To create a ptr task variable.

The user supplies a location for the handle

and the functions stores in it an available one;

The user also passes the size in bytes of the desired space
to be malloced and the pointer to it is stored in usrPtr.

Arguments:
int tId Task ID as returned , for example by the call to
taskIdSelf();

int *usrHandle Task variable handle: the user supplies a location

26

int size

for it and the functions stores in it an available one;
If the handle address already contains a valid handle
its value is returned.

Size in bytes to be malloced.

DVX_PTR **usrPtr

Pointer to the malloced space.
DVX_PTR is a typeded defined in the include file

dvx.h as a pointer to void.

STATUS dvx_get_ptr (int tId, int usrHandle, DVX **usrptr);

Arguments:
int tId

int usrHandle

To retrieve the value assigned to the task variable.

The user passes the previously created handle to access
the task variable and its value is stored in usrPtr;

it returns OK or an error message

if the handle is not valid .

Task ID as returned , for example by the call to
taskIdSelf();

Task variable handle.

DVX_PTR **usrPtr

Pointer to store the retrieved value of the requested pointer.

STATUS atexit(void (*regFunc)(void));
To register the function regFunc as a task exit handler.
The function will be invoked by the system at task deletion time.

STATUS dvx_atexit(int (*regFunc)(int), int);
To register the function regFunc as a task exit handler.
The function will be invoked by the system at task deletion time.
The second argument is the argument to pass to the exit handler;

A typical example is to pass the task ID to be able to access
task variables during task exit .

27

4.5 Code example

The following is a code example of usage of the DVX task variables; at first the user checks
if the DVX package has been initialized. Two exit handlers are registered; then three DVX
task variables are created and for the scalar variable a value is set and then retrieved.

Please note: due to the use of task variable, the user should ALWAYS spawn the appli-
cation and NEVER execute it interactively.

/* Test to handle task variables using dvx task variable package */
#include "dvx.h"

int testVar(void);

void myexsubl (void);
void myexsub2 (void);
int myexsub2 (int);

int scalarHandle;

void myexsubl()

{

printf ("\n myexsubl: Hello from exiting \n");
return;

/* B e S b b e b e e g e e e b e B e e e */
void myexsub2()

{

printf ("\n myexsub2: Hello from exiting \n");

return;

/* This exit handler accepts one argument and it is registered using
dvx_atexit, an extension of the standard atexit that allows to pass
one argument. */

int myexsub3 (int tvar)

{
STATUS ret_status;

28

int rd_var;
printf ("\n myexsub3: Hello from exiting task Id = Ox)x\n", tvar);
/* Accessing a task variable */

ret_status = dvx_get_scalar (tvar, scalarHandle,&rd_var);
printf ("\n myexsub3: tid = Ox%x, data read = Ox¥%x\n",tvar, rd_var);

return (0K);

}
int testVar()
{
STATUS ret_status;
int dat;
int rdvar;
char *malptr;
int malsiz = 16; /* In bytes */
int *malintptr;
int *rdptr;
int tId;
int 1i;
int ret_atex;
int ptrHandlel;
int ptrHandle?2;
[k mm e - */

/* Checking if DVX task var facility has been initialized */
if (dvx_init_verify() != 0K) return (ERROR);

/* Registering two exit handlers */
ret_atex = atexit (myexsubl);
if (ret_atex != 0)

printf ("\n Unable to register function, table is fullln");

ret_atex = atexit (myexsub2);

29

if (ret_atex !'= 0)
printf ("\n Unable to register function, table is fullln");

tId = taskIdSelf();

ret_status = dvx_create_ptr (tId, &ptrHandlel, malsiz, (DVX_PTR **)&malptr);

if (ret_status !'= 0K)
{printf ("\n main: Error in creating pointer malptr\n"); }
else
{
printf ("\n main: handle ptr = Ox%x ,malptr = Ox%x \n", ptrHandlel, (int)malptr);
for (i=0;i<malsiz;i++) malptr[i]=(char)i;
}
ret_status = dvx_create_ptr (tId, &ptrHandle2, malsiz, (DVX_PTR #**)&malintptr);
if (ret_status !'= 0K)
{printf ("\n main: Error in creating pointer malintptr\n");}
else

{printf ("\n main: handle ptr = Ox%x, malintptr = Ox%x \n", ptrHandle2, (int)malintp
printf ("\n main: trying to use same handle for malinptr \n");
ret_status = dvx_create_ptr (tId, &ptrHandle2, malsiz, (DVX_PTR #**)&malintptr);
if (ret_status != 0K)
{printf ("\n main: Error in creating pointer malintptr\n");}
else

{printf ("\n main: handle ptr = Ox%x, malintptr = Ox¥x \n", ptrHandle2, (int)malin
p p p p

return_status = dvx_get_ptr (tId, ptrHandle2, (DVX_PTR *x)&rdptr);
printf ("\n main: retrieving variable ptr2 := Ox)x\n",(int)rdptr);

dat = 0x5000;
ret_status = dvx_create_scalar (tId, &scalarHandle);

printf ("\n main: scalarHandle = Ox)x, storing data = Ox)x\n", scalarHandle,dat);

ret_status = dvx_set_scalar (tId, scalarHandle, dat);

ret_status = dvx_get_scalar (tId, scalarHandle, rdPtr);

printf ("\n main: rdvar = Ox¥x\n",rdvar);

30

printf ("\n main: Exiting test_addvar ");

return (0K);

31

32

Part 11

Target Specific Libraries and
Routines

33

Chapter 5

MVME167 Supplement

5.1 Interrupt Routines

VxWorks uses the two timers in the PCCchip2; one for sysClk and one for sysAuxClk. The
VMEchip2 has two additional timers - 1 and 2. The interrupt routines follow the exact
same format as the sysAuxClkxxxx() routines, except they do not have the limitation of
minimum 3 ticks/sec and max 5000 ticks/sec. See VxWorks documentation for additional
information.

5.1.1 routines

e clklConnect(interrupt_handler,param);

e clkl1Disable();

e clklEnable();

e clklLevelSet(level); /* default is level 5 */
e clklRateGet();

e clk1RateSet();

e clk2Connect(interrupt_handler,param);

e clk2Disable();

e clk2Enable();

e clk2LevelSet(level); /* default is level 5 */
e clk2RateGet();

e clk2RateSet();

35

5.1.2 routines description

clk1Connect(FUNCPTR interrupt_handler, int param);

This function specifies the interrupt handler to be called at each vmechip2 timer 1 clock
interrupt. param is an argument to be passed to the interrupt handler. This function does
not enable the interrupts.

clk1Disable();

To turn off the timer interupts disabling the vmechip2 timerl interrupts.

clk1Enable();

To turn on system clock interrupts.

clk1LevelSet (int level);
To set interupt level, default is level5. Level will take effect at time of next clkxEnable call.

clk1RateGet();

To return the interrupt rate of the system clock as number of ticks per second.

clk1RateSet(int ticksPerSecond);
This routine sets the interrupt rate of the clock. It does not enable clock interrupts. It
returns OK or ERROR if the tick rate is invalid or the timer cannot be set.

The clk2xxxx functions perform in the same way as the clklxxxx for the vmechip2
timer2.

36

5.1.3 example

The following illustrates interrupt handler passing message to interrupt
task.

#include "msgQLib.h"

void initialization(void)

{
MSG_Q_ID msg_q;
void clockl_interrupt_handler(),clocki_interrupt_task();

msg_q = msgQCreate(100,4,MSG_Q_PRIORITY);
clkiDisable(); /* just for good measure */
clkiConnect(clockl_interrupt_handler,msg_q) ;
clki1RateSet(1); /* one tick per second */

taskSpawn("tClk1",200,0,2000,clockl_interrupt_task,msg_q);

clk1Enable();

void clockl_interrupt_handler(MSG_Q_ID msg_q)

{
msgQSend(msg_q,"1234",4 ,NO_WAIT,MSG_PRI_NORMAL) ;
}
void clockl_interrupt_task(MSG_Q_ID msg_q)
{
char msg_buf [4] ;
while(1)
{
msgQReceive(msg_q,msg_buf,4,WAIT_FOREVER) ;
/* more task code could go here */
logMsg("receive interrupt");
}
}

37

5.2 Simple Timing

The followinf routines are used to start ans stop timing measurements in the microsecond
accuracy.
5.2.1 routines

e clk1Stop()
e clk1Start()
e clk2Stop()
e clk2Start()

5.2.2 macros

These macros are defined in mv167sup.h.

e t1=clklRead /* read hardware timer and save in t1 */

e clk1Diff(t1) /* read hardware timer and return delta from t1 value */
o t1=clk2Read

e clk2Diff(t1)

(where t1 is an unsigned int)

38

5.2.3 example

#include "mv167sup.h"

example()

{
unsigned int t1;
c1k2Stop();
clk2Start();

t1=clk2Read;
/* place code to be timed here between clk2Read and clk2Diff(tl) */

logMsg("time in usec for stuff is ju\n",clk2Diff(t1));

5.3 VME Mapping Routines

The default for the 4, 8, 16, or 32 Meg boards is to enable A32 USR,SUP,D64,BLK,PGM
and DAT transfers (NOTE: no A24) starting at the following VME addresses:

e 4MB 0x00400000
e 8MB 0x00800000
e 16MB 0x01000000

e 32MB 0x02000000

Addresses given as parameters should have low 16 bits = 0. Blk xfers are only available
through DMA controller routines. Starting addresses must be on boundaries equal to the
size of the address range being mapped.

5.3.1 routines
support

e vmeSlaveMapShow()

e vmeMasterMapShow()

39

routines description

vmeSlaveMapShow();
It displays a map of memory sections assigned to a VME slave.

vmeMasterMapShow();
It displays a map of memory sections assigned to a VME master.

basic

This section deals with routines that allow to map the VMEbus to local bus using the
Slave Map Decoders (Slave Map functions) and routines that allow to program information
residing on the local bus to VMEbus map decoders (Maste Map functions).

For a complete description of the VME decoders for the VMEchip2 please refer to the
MVME167/MVME187 Programmer’s Reference Guide starting at page 2-25.

e vmeSlaveMapl(am,vmestart,vmeend,lbstart) /* am =0 disables; DEFAULTS */

e vmeSlaveMap2(am,vmestart,vmeend,lbstart)

e vmeMasterMapl(am,vmestart,vmeend,width) /* width: 0=D32,other=D16 */

e vmeMasterMap2(am,vmestart,vmeend,width)

e vmeMasterMap3(am,vmestart,vmeend,width)

e vmeMasterMap4(am,vmestart,vmeend,lbstart,width) /* only Map4 has translation */

e vmeMasterloMapl(am,width)

e vmeMasterloMap2(am mode)

routines description

vmeSlaveMapN(am,vmestart,vmeend,lbstart) N=1,2

It allows to map two different VMEbus segments to local bus using the two slave map decoders.
Arguments:

unsigned int am VME address modifier

unsigned int vmestart VME starting address

unsigned int vmeend VME last address

unsigned int lbstart local address

vmeMasterMapN(am,vmestart,vmeend,width) N=1-3

40

It allows direct mapping between local address space and real VME address space.
Arguments:

unsigned int am VME address modifier

unsigned int vmestart VME starting address

unsigned int vmeend VME last address

unsigned int width Data width: 0 = D32, other = D16

vmeMasterMap4(am,vmestart,vmeend lbstart,width)

Same as the Master Map 1-3 plus it allows for translation of VME address. example, map to a VME address
Arguments:

unsigned int am VME address modifier

unsigned int vmestart VME starting address

unsigned int vmeend VME last address

unsigned int lbstart local address

unsigned int width Data width: 0 = D32, other = D16

vmeMasterloMapl(am,width)

Arguments:
unsigned int am VME address modifier :
User = 0x29
Supervisory= 0x2D
Other disabled
unsigned int width VME address modifier
unsigned int width Data width: 0 = D32, other = D16

vmeMasterloMap2(am_mode)

Arguments:
unsigned int am_mode address modifier mode:
User = 0 or 0x29
Supervisory= 1 or 0x2D

next level

This section deals with routines that have to do with cache coherence. The MV 167 local bus
master is capable of driving the snoop control signals during bus transactions. With these
controls, the MC68040 internal cache can be maintained cache coherent, allowing software
applications to run without flushing the data cache. Please note that the bus overhead

41

required to maintain the internal 68040 data cache coherence may counteract the benefits
of not having to control cache coherence through software cache management.

5.4

5.4.1

basic

vmeSlaveMaplAm(am) /* add additional ams; am=0 disables mapping register */

vmeSlaveMaplSnWp(snoop_write_post) /* 0=NO snoop,NO wp; 1=NO snoop, WP */
/* 2=wr snk,rd dirty, NO wp */
/* 3=wr snk,rd dirty, WP */
/* 4=wr invalidate,rd invalidate, NO wp */
/* 4=wr invalidate,rd invalidate, WP */

vmeSlaveMap2Am(am)
vmeSlaveMap2SnWp(snoop_write_post)
vmeMasterMaplWp(enable) /* 0=disable; other=enable */
vmeMasterMap2Wp(enable)

vmeMasterMap3Wp(enable)

vmeMasterMap4Wp(enable)
vmeMasterloMaplWp(enable)
vmeMasterloMap2Wp(enable)

vmeBR(Ivl) /* Its a constraint of the hardware on the board */
/* that the first Bus Request level is 3 */

DMA Routines

routines

dmaConnect(interrupt_handler, param)

dmaDisable()

dmaEnable()
dmaStart(vmeadd,localadd,bytecnt,direction,dtb_mode,non_blk_am)

dmaDone()

42

routines description

dmaConnect(FUNCPTR interrupt_handler, int param);
It allows to associate an interrupt handler routine to the arrival of a dma interrupt; param
is an argument passed to the interrupt handler code.

dmaDisable();

It disables dma operations disabling dma interrupt generation.

dmaFEnable();

It enables dma operations enabling dma interrupt generation.

dmaStart(vmeadd,localadd,bytecnt,direction,dtb_mode,non_blk_am)
It starts dma transfers.

Arguments:
caddr.t vmeadd VME starting address for the transfer.
caddrt localadd User’s program-defined starting address to write data
to or to read data from depending on the transfer direction.

unsigned int bytecnt Number of bytes to transfer.
int direction Transfer direction: 0 = from VME , 1 = to VME.
int dtb_mode Data size transfer mode:
0=D16
1=D32
2 = D32BLK
3 = D64BLK
int non_blk_am Non block transfer address modifier.

Note: When dtb_mode’s 2 or 3 are chosen, the dma controller will automatically mod-
ify the am. The controller will use the un-modified non_blk_am if xfers at the beginning
and end of the dma that are not D32/D64 aligned. For example, if your parameters were
(0x82000003,&buff,10,dir,2,9), (09=extended,usr,data) the DMA controller would automat-
ically do a single byte xfer using am=09 followed by a 2 D32 BLOCK xfer with am=0x0b
(0B=extended,usr,block) and finish again with a single byte xfer with am=09. Symbols
D16, D32, D32BLK, D64BLK are defined in mv167sup.h */

dmaDone();
This function is used to poll for completion of DMA transfer.
It returns: 1 = DMA done; 0 = DMA NOT done; any other status means an error. See
$VX_TOOLS_DIR/mv167/include/mv167sup.h for "’DMA_DONE” defines and macros.

43

example

#include "mv167sup.h"
#include "semLib.h"

ttt O

{
extern int dma_interrupt_handler();
int i;
SEM_ID sem;

sem = semBCreate(SEM_Q_FIFO, SEM_EMPTY);
dmaConnect (dma_interrupt_handler,sem) ;
dmaFnable();
dmaStart (0x82000000,0x100000,1000,0,0,9);
for (i=0;i<3;i++)
{

semTake(sem,WAIT_FOREVER) ;

dmaStart (0x82000000,0x100000,1000,0,0,9);

dma_interrupt_handler(sem)
SEM_ID sem;

{
logMsg("hello™);
semGive(sem) ;

44

next level

e dmaStatus() To test dma status: 0 in progress, 1 done, otherwise
error.

e dmaLevelSet(level) To set the interrupt level; default is 5.

e dmaStartChain(chain_struct_addr_ptr) This is used to chain different vme

address ranges and automatically transfer data to/from them . The user needs to
supply a link list of structures containing the same information as he would pass
through dmaStart call.

e dmaVmeBR(Iv]) To control the VME bus request levels : 0-3 are the allowed
level values.

e dmaSn(snoop_-mode) To control the snoop mode = 0-3 as on p. 2-53 of 167
programmer’s ref */

e dmaThrottle(release_mode,time_on,time_off) To control the relesae mode of the DMA
controlle: see page 2-51 and 2-60 for the time values in the mv167 programmer’s
reference guide.

release mode = 0-7

0 = release on timer expire AND BRx active

1 = release on timer expire

2 = release when a BRx is active

3 = release on timer expire OR BRx active

4-7 = repeat above and add "fair mode” (DMAC waits until it’s BR level is INactive)
time_on and time_off times increase as number goes up */

e fchain struct_addr_ptr = dmaChainHead(chain_ptr,vmeadd,localadd,
bytecnt,dir,dtb_mode,non_blk_am)
/* If chain_ptr is NULL, malloc */
/* will be called. */

e fchain struct_addr_ptr = dmaChainAdd(chptr,vmeadd,localadd,bytecnt,
dir,dtb_mode,width,non_blk_am)
/* If chain_ptr is NULL, malloc */
/* will be called. */

¢ tdmaChainSn(mode) /* mode = 0-3 as on p. 2-49 of 167 programmer’s ref */

fnot complete

45

5.5 Readout routines

5.5.1 routines for reading EBIs

e readEbiOne(addrebi,chkebi,nwords,data)

addrebi - Pointer to read address 0xXXXX0000

chkebi - Pointer to status address 0xXXXX8004

nwords - Total number of 32-bit words read

data - Array of words read
First word: Word count for buffer
Second ... last word: Data from buffer

routine to read one EBI with address XXXX. It waits until buffer has data

e readEbi(nebis,addrebi,chkebi,nwords,data)

nebis - Number of EBIS to read

addrebi - Array of pointers to read addresses 0xXXXX0000

chkebi - Array of pointers to status addresses 0xXXXX8004

nwords - Total number of 32-bit words read

data - Array of words read
First word: Word count for first buffer (=N1)
Second ... N1+1: Data from buffer one
N1+42: Word count for second buffer (=N2)

N1+3 ... N1+n2+2: Data from buffer two etc.
routine to read up to 10 buffers. It checks if buffers are synchronized and returns 0 if

they are OK or 1 if they are out of Synch. It waits until all buffers have data before
it reads them out.

46

5.5.2 example

/* routine to read EBIs from MVME167 and return the average readout timex/
#include "vxWorks.h"

#include "stdioLib.h"

#include "math.h"

#include "mv167sup.h"

#include '"vmel67.h"

#include "taskLib.h"

#include "wdLib.h"

int rdebi(nevt)

int nevt;

{

int n2,j,1;

int ReadEbi();

unsigned int istat,nwords,data[2000];
int *addrebil[10], *chkebi[10];
unsigned int t1,tim,t2,t2in;

float mean,rms;

vmeMasterMap3Am(SUP_DAT) ;

c1k2Stop();
clk2Start();

printf ("Number of events to be read %d\n'",nevt);
n2=0;

t1=clk2Read;

t2in=clk2Diff (t1);

printf("time %u\n",t2in);

* Addresses of EBIs */

chkebi[0] = (int *)0xc5008004;

addrebi[0] = (int *)0xc5000000;

chkebil[1] = (int *)0xc4008004;

addrebi[1] = (int *)0xc4000000;

tim=0;

do { /* read nevt events with dma */
t1=clk2Read;
istat=ReadEbi(2,addrebi,chkebi,&nwords,&data);
if(istat != 0) goto 1lp2;
++n2;
tim += clk2Diff(t1);

47

} while (n2 < nevt);

1p2:

printf ("end**x* Number of events read: %d\n", n2);
mean = (float) tim;

mean /= n2;

mean -= t2in;

printf("mean: %f usec\n",mean);

return O;

¥

5.6 VME Interrupts

5.6.1 handler

VME interrupters generate the VECTOR_NUMBER. From the applications notes -
VxWorks uses the following interrupts:

Mailbox 71
System Clock 113
Auxillary Clock 72
Exelan 193
CMC (enp) 192
Serial Tx 74
Serial Rv 76

ttintConnect(INUM_TO_IVEC(VECTOR_NUMBER), routine, parameter); To con-
nect a specified C routine to a specified interrupt vector.Routine is called with the
parameter when the interrupt occurs.

tsysIntDisable(vmebusirglevel) To disable a specified VMEbus interrupt level.

tsysIntEnable(vmebusirglevel) To enable a specified VMEbus interrupt level.

fvmelntLevelSet(vmebusirglevel,cpulevel) To set an interrupt level, default level is
that of irqg.

tsysBusIntAck(vmebusirglevel) To acknowledge a specified VMEbus interrupt level.

ftimplemented by VxWorks as part of the intArchLib fimplemented by VxWorks as
part of sysLib as specified in the MVME 167 VxWorks board support document.

48

5.6.2 generator

The big thing here is the interrupt that occurs when the interrupt you generate is acknowl-
edged. But it would not be unlikely that you would do nothing when the interrupt is
acknowledged; so you would not use vmelacked*.

e sysBusIntGen(vmebusirglevel,vector) To generate a VMEbus interrupt for a specified
interrupt level.

e vmelackedConnect(routine,arg)
e vmelackedDisable() To disable system clock interrupts.
e vmelackedEnable() To enable system clock interrupts.

e vmelackedLevelSet(level) To set an interupt level, default is level5. Level will take
effect at time of next clkxEnable call.

5.7 General Interrupts

e interruptLevelShow() /* Shows interrupt level and vector number */
/* information first for VM Echip2 interrupts, */
/* then for PCCchip2 interrupts. */

5.8 Address Translation / Cache Mode Control

5.8.1 routines

¢ addressTranslationShow(force) /* 0=show page table if enabled; 1=show table */
e addressTranslationRoot(page_size) /* 1=8K pages; 0=4k pages */

e addressTranslationEnable(upper_mem) /* 0x80000000,0xc0000000,0xe0000000,...
...0xfc000000,0xfe000000 0=0x{f000000 */

e addressTranslationDisable()
e addressTranslationClear(log_start,log_end)

e addressTranslation(log_start,log_end,phys_start,cache_mode,write_prot,expert)

write_prot=1 — protect pages
cache_mode=0 — writethrough
cache_mode=0 — copyback
cache_mode=0 — cache inhibit, serialized

49

cache_mode=0 — cache inhibit, nonserialized
expert — entire page descriptor (don’t use)

e addressTranslationdttO(base,mask,enable,cm,wp,expert)

These routines effect paged address translation. Transparent translation (which vxworks
uses) will still be in effect for all direct physical memory accesses and accesses to the upper
16Meg address range.

The indended use for these routines is to change the data space (as opposed to instruc-
tion/execution space) caching mode for a block of physical local memory space BY AC-

CESSING THE BLOCK VIA LOGICAL ADDRESSES.

Any address block that does not overlap with the physical memory address range or the
upper 16M address space (ffxxxxxx) may be used for a logical address block.

logical addresses can also be transalated/mapped to (physical) addresses above the physical
memory address range. i.e. log_start same as phys_start in addressTranslation.

paged address translation can be used for VME mapping, or transparent can be used when
vme mapping is placed above "upper_mem” (addressTranslationEnable(upper_mem)). A
logical address

Example: To change the cache mode, from the vxworks default of copyback,
for a 2k address block at physical address ff0c10-ff140f, two 4k
block at (ff0000 and ff1000) will need to be mapped).
You can pick a logical address, say 0x07ff0000. If you use
0x07ff0c10 (physical address with upper bits changed to move it into
"logical address space”) the program will automatically allocate
the correct pages.

e addressTranslationRoot(0); /*setup 4k page paged address translation table*/

e addressTranslation(0x07{f0c10,0x07ff140f,0xff0c10,0,3); /* setup cache */
/* inhibited block(s) */

e addressTranslationShow(1); /* show pages defined */

e addressTranslationEnable();

Note: remember, because of the AddressTranslationCache, you may have to re-issue ”ad-
dressTranslationEnable()” (which flushes the ATC) in order for changes made, by an ad-
dressTranslation(...) call while paged address translations are enabled, to take effect. An
example of this is re-issuing the same addressTranslation(...),except with a different cache
mode or write protect mode.

50

Note: you can have different caching mode within a 4k physical block by accessing them
through different 4k logical address blocks.

5.9 Routine Summary

The support object module mv167sup.o is located in the vx_tools
directory tree.

$VX_TOOLS_DIR/(version dir)/mv167/1ib/mv167sup.o /* object module to */
/* download */

$VX_TOOLS_DIR/(version dir)/mv167/inc/mvi67sup.h /* "Simple Timing" */
/* macros and defines */

There are defines for some of these arguments in vml67sup.h;

Some of the args I don’t have defines for (i.e. ENABLE) because
they are so general that they would probably conflict with someone
eventually.

The routines in mv167sup are

gpioConnect(routine, arg) /* for interrupt through J3pinl9 and PCCChip2 */
gpioDisable ()

gpioEnable (mode) /*O=high 1vl; 1=rising edge; 2=low 1lvl; 3=falling edg*/
gpioLevelSet(level)

gpioStatus () /* status of PCCChip2 gpio (interrupt pin) */
gpioMode(O=input, l=output) /* when not using J3Pinl9 for interrupt */
gpioSet(O or 1) /* returns -1 if not in output mode */

gpioV{,3,1}Status /* level of VMEChip2 gpio{3,1} ==> J3pin{18,16} */
gpioV{3,1}Mode /* set mode of VMEChip2 gpio{3,1} ==> J3pin{18,16} */
gpioV{,3,1}Set /* for gpioVSet (returns 0-3), 3pinl8 = most sig. bit */
clkxConnect(routine, arg) /* x can be 1 or 2 */

clkxDisable ()

clkxEnable ()

clkxLevelSet(level) /* level can be O thru 7 */

clkxRateGet ()

clkxRateSet (ticksPerSecond)

clkxStart ()

clkxStop ()

LMxConnect(routine, arg) /* x can be 0 or 1 */

LMxDisable()

LMxEnable()

LMxLevelSet(level)

51

LMCheck (LM) /¥ LM can be 0, 1, 2, or 3 */

LMAddressSet(16bitaddr) /* only upper byte is valid, lower */
/* Dbyte are preset - LMO:F1, 1:F3,*/
/% 2:F5, 3:F7 %/

/*NOTE: routines write same regk/

LMSIGAddressShow()

SIGConnect(sig, routine, arg) /* sig can be 0, 1, 2, or 3 */

SIGEnable(sig)

SIGDisable(sig)

SIGLevelSet(level)

SIGAddressSet(16bitaddr) /* only upper 3 nibbles are valid, - */
/* low nibble is preset to 2, - */
/* value xxFx disables the map decoder*/

/*NOTE: routines write same regk/

mx (addr) /¥ x can be b, w, or 1 */
vmeSlaveMapShow ()

vmeMasterMapShow ()

interruptLevelShow()

vmeSlaveMapx (am,vmestart,vmeend,lbstart) /* x can be 1 or 2 */

NOTE: the window size (vmeend-vmestart)
determines the boundaries that vmestart
and lbstart must begin on.

vmeSlaveMapxAm(am) /* x can be 1 or 2 %/
vmeSlaveMapxSnWp (am) /* x can be 1 or 2 %/
vmeMasterMapx (am,vmestart,vmeend,width) /¥ x can be 1, 2, or 3 %/

vmeMasterMap4(am,vmestart,vmeend,lbstart,width)
NOTE: the window size (vmeend-vmestart)
determines the boundaries that vmestart
and lbstart must begin on.

vmeMasterIoMap2(am_mode)

vmeMasterIoMapl(am,width)

vmeMasterMapxAm(am) /¥ x can be 1, 2, 3, or 4 %/

vmeMasterMapxWp (enable)

vmeBR ()

dmaShow ()

dmaConnect (routine, arg)

dmaDisable()

dmaFnable()

dmal.evelSet(level)

dmaStart (vmeadd,localadd,bytecnt,dir,dtb_mode,non_blk_am)

dmaStatus ()

dmaDone ()

dmaThrottle()

52

dmaSn ()

dmaChainSn()

dmaVmeBR (level)
dmaStartChain(addr)
cacheControlShow()
vmeIlackedConnect(routine,arg)
vmeIackedDisable()
vmeIackedEnable()
vmeJIackedLevelSet(level)

addressTranslationShow(force) /* O=show page tables if enabled; */

/* 1=show tables */
addressTranslationRoot(page_size) /* 1=8K pages; 0=4k pages */

addressTranslationEnable(upper_mem) /* 0x80000000,0xc0000000... */

/* ...0xfc000000,0xfe000000 */

/* 0=0xf£000000 */

addressTranslationDisable()
addressTranslationClear(log_start,log_end)

addressTranslation(log_start,log_end,phys_start,cache_mode,

cache_mode=0 =>
cache_mode=0 =>
cache_mode=0 =>
cache_mode=0 =>
write_prot=1 =>

write_prot,expert)
writethrough
copyback
cache inhibit, serialized
cache inhibit, nonserialized
protect pages

expert => entire page descriptor (don’t use)
addressTranslationdttO(base,mask,enable,cm,wp,expert)

53

Appendix A

devel Release Notes

This is a development version.

A.1 bug reports

The code used to create the "support” object module includes the file
$VXWORKS_DIR/config/mv167/mv167.h. I found a bug in that object module

and have fixed it. (See note in VxWorks notes conference).

54

Appendix B

vl_3 Release Notes

B.1 flavor M68k

Sources were updated to reflect the changes from VxWorks v5.0.2b to VxWorks v5_1.
These changes are meant to be backward compatible with VxWorks v5_0_2b. Version v1_.3
of VX_TOOLS was built against dependent products under the umbrella product vxprods
vb5_0.

B.2 flavor R3k

Sources were modified to fix problems that generated errors or warnings from the native
IRIX compilier with the fullwarn switch. Some warnings could not be addressed because of
minor problems with the VxWorks v5_0_5 include files.

B.3 New Features

e A new script has been added to the $VX_TOOLS_DIR/all/bin area named vxsetod.
This script can be used to set the time and date on a VxWorks node from a Unix
node using vxRsh.

o VxWorks v5_1 includes a new library ansiTime that contains routines that collide in
name space with routines in the VX_TOOLS time of day librarys. The VX_TOOLS
time of day librarys have the advantage of including routines to set the time and date.
The VX_TOOLS time of day routines are not affected if they are loaded over the
VxWorks v5_1 ansiTime library.

e The VME interrupt routine interface has changed for several routines - see VME
interrupt section for details.

55

Appendix C

vl _3_ 1 Release Notes

C.1 flavor M68k

This version was built with VxWorks version v5_1_1. Product dependencies were resolved
with vxprods v5_1. There were no changes made in the product other than those made in
the build and premake files to recognize the new VxWorks version.

56

Appendix D

vl_4 Release Notes

D.1 flavor M68k

This version is built under VxWorks version v5_1_1.
New features are the following:

e DVX Dart Vxworks eXtensions facility that includes the atexit function implementa-
tion and an alternative task variable package to the one provided by VxWorks.

e A TRACE facility, a debugging aid to trace execution of code through printed in-
formation in a similar fashion as using printf’s statements. A very significant aspect
of TRACE is that the user can have two MVME 167 boards in the same crate, and
use one to trace what happended in the other in the case of a crash for which the
second board is hung. The current TRACE implementation is supported only for the
MVME167.

o A new enlarged version of the document.

57

Appendix E

vl_5 Release Notes

E.1 flavor M68k

This version is built under VxWorks version v5_1_1.
New features are the following:

e The fscc support software is implemented for the pc4a; no pc4 is available from this
version or greater.

e DVX Dart Vxworks eXtensions facility includes now an alternative way to register
exit handlers besides the use of the atexit function. The dvx_atexit function allows the
user to pass an argument to the exit handler; this is not forseen under the standards
for the "UNIX style” atexit call.

58

Appendix F

vl _6 Release Notes

F.1 flavor M68k

This version is built under VxWorks version v5_1_1.
This version has no new features, just bug fixes in the dvx exit handlers.

59

