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Introduction

Physical observables in QF T calculated in path integral formu-
lation. Schematically,

©) = - [dU10W) exp(~igsW))

If coupling g is small, expand exponential. (O) is calculated
to some prescribed order in the coupling, ¢". Use Feynman
diagrams.



If coupling is not small (low energy QCD) can't expand expo-
nential. Or if bound states required can’'t use PT. Just do the
whole integral. Use lattice/numerical monte-carlo techniques.

Either way, integrals are in general divergent: co number of de-
grees of freedom (fields) that can take values from —oo to 4c0.

Must make them finite — regularize. Many ways to do this, but
must be careful not to destroy symmetries of the original theory
(at least they must be recovered when the regulator is removed)



Non-perturbative regularization

Discretize the continuum action on a four-dimensional (Euclidean)
space-time lattice with spacing a. [K.G. Wilson, 1974]

as
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is insensiitve to a (scaling)
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e Path integrals finite: finite
Ls number of degrees of freedom
(sites)

e Momentum cut-off
Pmax ~~ 1/(1



Do this in a gauge invariant way

Replace continuum vector potential (Gluon fields), A, = Afb ¢
with

Ay(x) = Uu(z) = e 19aAu(x)

The “link” Uy(z) is an element of the group SU(N), with gauge
transformation g(x)

Up(z) — g(z) Up(z) gz + @) Uu(z), g(x) € SU(N)

So a path-ordered product of link fields transforms like

g(x) Up(x) Up(x + ) - Up(y) g(y + )1



If the path is a closed loop, e.q.

9(2) Up(z) Up(z + 1) Ul (z + D) Uf(2) g(z)T

()

U,u(f[)

And we take the trace, it is
gauge invariant. Generally
true that the trace of (any)
closed path-ordered product
of links is gauge invariant.



Treating the fermions is (naively) straightforward. Transcribe
the continuum field ¥ (x) to the lattice site z.

b(x) — Pt

Under a gauge transformation,

I I
g = (@
Tlatt _Iattg—l(x)

x — x



Construct the action.

Work in Euclidean space: analytically continue t — it (Wick
rotate) so metric is

diag(1,1,1,1) and not diag(-1,1,1,1).

Covariant and contravariant indices mean the same thing.



Fermions first.

For a single flavor
S = [ d2 @ +m)u()

— TZachywy
v is now a 12 component vector (3 colors x 4 spins) at each
site on the lattice.

fermion matrix is a 12 x 12 matrix each pair of n.n. sites

Up(®) Sptafiy — Up(@ — ) 84_ai
My = ny/i n(x) x+ajiy 2,LL($ i) oy a'u’y+am5a:,y
w

Factors of the links make the lattice action gauge-invariant.

A large, sparse matrix: (L% x 12) x (L* x 12). Can invert it in
O(12 x L*) operations, not O((12 x L*)?)



Gluon action

1 §)

Z > (RTrOuw)

Sites u>v

Which you can check by expanding
IimO Uu(z) =1 —igaAu(x) +---
a—
and neglecting terms of O(a?) and higher.
At this point, the lattice action, Sf + Sg, has all the symmetries

of the continuum, except Euclidean (Lorentz) invariance which
is broken down to (invariance under) the Hypercubic group H(4).



The continuum limit, a — 0 (remove the regulator).

Adjust bare coupling, 6/¢g2, and quark mass(es) am to give some
observable its physical value, say MN/Mp. Move toward a=0,
g,m — 0O keeping My/M, fixed. Predict all other (ratios of)
physical observables on this (renormalization ‘“group”) trajectory.

6/9°



How do we know this works?
Answer: asymptotic freedom of QCD: non-trivial continuum
limit

For sufficiently small g, solution of the QCD g function (physics
does not depend on the lattice spacing (regulator)) reads:

aNgep = (9270) 1218 exp (~1/(293 ) (1 + O(4?))

On lattice then, in the asymptotic scaling regime, all observables
scale this way, so in particular, ratios of physical observables (e.g.
My /M)y, or anythingelse you can think of) are independent of the
lattice spacing— the renormalization group trajectory.



In practice, the scaling regime is hard to access:

“critical slowing down’”: as a — 0O lattice correlation lengths
diverge. Physics is scale invariant. Continuum Ilimit is a 2nd
order phase transition.

Instead, simulate at several values of 6/g2 (modest lattice spac-
ings) and several quark masses at each lattice spacing.

Extrapolate in quark mass to desired physical point, then ex-
trapolate to a — O in leading discretization error, i.e. linear or
quadratic in a.



Monte Carlo Simulation

Back to the path integral

©) =  [dld.4, 010, U) exp (i S, 1)

Analytically continue (Wick rotate) to Euclidean space-time so
the integrand behaves sensibly:

©p) = - [ AlE.6.UIOp(.1.1) exp (~Sp(f..U)

(Now drop all “E" subscripts)

Fermion integrals are Gaussian, do them analytically.

(0) = % / [dU1O(U) det(M(U )" e 59(U)



det(M(U))"*e~5s is an ordinary probability weight: do the in-
tegral over gauge fields numerically by Monte Carlo simulation
(stat. mech. in d4+1 dimensions).

Use importance sampling to generate an ensemble of gauge field
configurations (O(100 — 1000) independent ones):

e 1 configuration = set of link variables over entire lattice

e update algorithm: choose links randomly

e algorithm must satisfy detailed balance and ergodicity



e generate configurations with probability det(M(U))" e~y

e Observables become simple averages over configurations.

Simulation with det(M(U)) (dynamical fermions) is costly.
det(M(U)) = 1 is the quenched approximation, i.e., no virtual
quark loops in the vacuum (mg — c0).



Fermion discretizations
(why not naive fermions?)

Py — P+ i) —(z—R))/2a

iYu Sin(apy) _ TYuaPu

Glat(p) = 5 sin2any)  Slam)?

G,¢.(p) has a pole at each corner of the Brilloiun zone:
p* = (7 /a,0,0,0), (0,7/a,0,0),...,(x/a,7/a,7/a,7/a)

LLattice theory corresponds to 2d fermion flavors instead of one.



These extra fermions are called doublers. Appeared because of
the inherent periodicity of the lattice.

Minkowski space dispersion relation (E = |p|)

light fermion light fermion

’

0 T

Even worse for the Standard model, the doublers appear in pairs
with opposite chirality—theory is vector-like( Nielsen-Niyomiya
No-Go theorem). Deep connection to gauge- invariance.



Must get rid of the doublers.
1. Wilson fermions. Add an irrelevant term to the action
Sw = g%%
~ %%: 1 — cos(pu)

Like a mass term. Doubler mass ~ 1/a, and they decouple.

light fermion

]




Problems with Wilson Fermions:

e Chiral symmetry (of QCD) is explicity broken, badly broken.
(flavor symmetry is still exact, as in the continuum)

e Chiral limit = mg — O.

e Complicated fine tuning (operator mixing) of observables
required for correct chiral behavior.

e Errors are O(a): slow approach to the continuum (can be
improved to O(a™) n = 2 now, big job)

All problems solved as a — O



2. Kogut-Susskind.

Spin diagonalization. Throw away 3/4 of components: 16 Dirac
fermions = 64 componets — 16. One component “spinor” on a
lattice site.

Exact remnant chiral symmetry, so mq — O is the chiral limit

Can reconstruct 4 Dirac fermions from components in 24 hyper-
cube. In the continuum limit this is a theory of 4 degenerate
quarks. For a #= 0 flavor, spin, and space-time symmetries are
mixed.

Take fractional power of fermion determinant to simulate real
QCD (241 flavor).



Problems with Kogut-Susskind fermions
e Have to take fractional powers of the determinant!

e Flavor symmetry is broken: one light pion instead of 16 -1 =
15

e Relation to continuum operators can be very difficult to work
out

e Errors are O(a?) but are unusually large because of flavor
symmetry violation. Again, slow approach to continuum.
Can be improved: now the state-of-the-art for dynamical
fermion simulations (a?-tad).



3. Ginsparg-Wilson fermions.

Discovered in 1987 (then forgotten) the most chiral symmetry
that a lattice theory can have

5 D + D~s
5Dt + D s

aD R~ D
a R~s

Meanwhile, domain wall fermions (DWF) (Kaplan 1992) and
later overlap fermions (Neuberger 1997) were discovered. Worked
for vector gauge theories. Hasenfratz rediscovered the G-W rela-
tion, and it was soon realized that DWF and overlap are examples

(with R = 1/2).



G-W fermions Remove the doublers while (essentially) preserving
full SU(Ny¢)r, x SU(N¢)gr chiral symmetry of the continuum at
non-zero lattice spacing.

We (RBC) use domain wall fermions (Shamir 1993)

< A

—_— . /.4 12 L.

1 2

Errors are O(a?)



Problems with Ginsparg-Wilson fermions

e EXpensive!

e 1st large-scale dynamical fermion simulation done here at
BNL (and Columbia University). Light (up and down) quark
mass 1/2 to 1 times mgirange (Need to reduce by 10). Volume
is not large (~ (2fm)3), and only one lattice spacing.

e Took almost 2 years on our own supercomputer (QCDSP)!

Continuum-like properties — approach to continuum is faster

New computer(s) coming: QCDOC (x20 faster, 5 TFlops/sustained)



Masses and Matrix elements from Euclidean space correlation
functions.

Consider the pseudo-scalar meson (pion) 2-point correlation func-
tion

Js(t) = D P(x, t)ys(a, t) el
Z
Sum over x projects onto the state with momentum p

The zero momentum correlation function reads

C(t) = > (0[g(z, t) 59 (x, t) 1(0,0) v54(0,0)[0)

T

Wick contract fields into quark propagators
—1 —1
C(t) — ZTI’ [MO;:E,t 5 M:B,t;O/Y5]
Tz



What's it good for?

Use time-translation operator U = exp (—H t) and insert a com-
plete set of states (H is the QCD Hamiltonian, and the states
are eigenstates of H) (in Euclidean space there is no 7 in U)

C(t) = D> (0l Pp(z) v5 9 (x) e '(0) v5 9(0)|0)

X

= Y (0le?tP(x) 5 p(x) e Y n){n| ¥(0) 5 1(0)|0)

€T n 2EnV
_ _ e—Ent
= 0 n)(n 0
;( % v5 9 [N)(N]) s | >2EnV
/s 2
lim = |<O|¢’Y5¢|7T>| e—mwt
t—00 Qmﬂ_

Fit yields physical particle mass and matrix element.



or the nucleon 3 point correlation function,
@ ) Y T8y (x, 1) Tptpg(z, )] Xy (p,0)) —
XL

S OIxn @, )P NP, 8T (@), s)(p, slxly (0, $)]0) %

s,s’
e~ Et—E'(t'—t)
2FE2FE

where t/ > t> 0, ¢= 1;’ — p, and x is the nucleon interpolating
operator

Euclidean space continued LSZ reduction formula that relates
(the Fourier transform of) Minkowski space Greens functions to
S-matrix elements. Exponentials pick them out instead of poles.



This always works for single-particle states (like nucleon matrix
elements).

For multi-paritcle states (i.e. non-leptonic decays) this is much
more difficult



Accessing the chiral limit, mg; — O

Ideally, adjust the quark masses in our simulations until observ-
ables (masses, decay constants, ...) match their physical values

e.g., adjust m,, and mg until the pseudo-scalar meson mass is
mr = 135 MeV. Knowing the value of the light quark masses,
we can predict the proton mass, neutron mass, fr, etc.



Not so simple. The chiral limit, m — O is difficult.

e ‘‘cost” of quark propagator M1 Z#iterations ~ %

e Compton wavelength of the pion mi — o0 as mg — O,

T

sO must take V — oo to avoid finite volume effects

e Instead, work at unphysical (larger) m, and extrapolate to
the physical regime (chiral limit). Use Chiral Perturbation

Theory as a guide.



Chiral Perturbation Theory (S. Weinberg)

LLow energy effective field theory of QCD. Systematic expansion
in p2, around p2 = 0 (chiral limit). (Pseudo-) Goldstone bosons
are the only degrees of freedom left.

2 QB
L52p = %tr[@MZT(‘?“Z]—I—f Ytrxts + =ty
> = exp [2i¢a>\a]
f

> — VLZV); (under a chiral transformation)

> is the unitary chiral matrix field (V, p € SU(Ny)), A* are pro-
portional to the Gell-Mann matrices with tr(Ag)\y) = 6,4, @@ are
the real pseudoscalar-meson fields, and f is the meson decay
constant in the chiral limit. x = (mu, mg, ms)diaqg



To lowest order

72'(' — BO(mu+md)
m%( = Bg(mg+ ms)

3
|

At this order, we can work with mesons made from degenerate
quarks, so the quark masses corresponding to the physical mesons
are

My, + my
m; = 5
ms/2 — T Tms

2



Can go to higher order in xPT (O(p*))

RBC np = 2 dynamical quark simulation:

| . | . | . | . | . o ——————————
,I
015 .
01l . 0.1 .
(q\]
2] )
o
s =
0.05 .
- 0.08 .
07 —
I I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
0.04 0 0.01 0.02 0.03 0.04 0.05
val f

fr/fr = 1.194(12) (statistical error only)



Operator Renormalization

In lattice QCD calculations, we often calculate matrix elements
of local operators generated by an Operator Product Expansion
(OPE) of a non-local operator (usually a product of two cur-
rents). e.g. DIS, or non-leptonic Weak decay of hadrons.

We do this out of necessity since the physical processes can not
be calculated purely perturbatively or non-perturbatively.

APYS = 3™ Cp) (f1On (1))

APNYS gnd states do not depend on scale u



Define finite, renormalized operator at scale u

O(pn) = Zo(ap)O(a)

Zn(ap) can be computed:

e In lattice perturbation theory

e Non-perturbatively (RI-MOM) (mimic perturbation theory
~ very high order perturbative calculation)

e perturbative matching to MS, or whatever scheme is used
to compute Cn ()



Lattice complications:

Broken symmetries (Lorentz, chiral symmetry, flavor, ...) —
operator mixing

Non-perturbative renormalization (NPR) required when mixing
with lower dimensional operators occurs. These are power di-
vergent in the lattice spacing a—(d=d) instead of the usual loga-

rithmic divergence Iog(a,u) ( ... domain wall fermions)



To calculate Z»n compute Landau gauge off-shell matrix elements
of O(a) between quark and/or gluon states

Zo

Y =1
2:,“2 Zq

TTV@(pQ)I_‘p
o Vyh(p?) the amputated vertex
constructed from the full non-pert
quark propagator

e [ A projector
This defines the MOM scheme. Extrapolate to my — O and we

have the RI scheme (Regularization Independent).

Martinelli et.al. Nuc.Phys.B445 81 (1995)



Zs(u?) (dp) renormalization
factor, and divided by 3-loop
perturbative running.

RBC (2001).
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Statistical and Systematic errors

e Finite sample of configurations: statistical errors

e Finite volume

e Non-zero lattice spacing

e chiral limit

e quenched approximation

Lattice Gauge Theory provides a first principles framework to
solve QCD, with (in principal) arbitrary precision



