RHIC Physics Feeds Future High-Tech Workforce

The RHIC program constitutes a technical, scientific wellspring that feeds many fields. Maintaining such facilities keeps an ever-more-sophisticated, highly specialized workforce growing.

In addition to helping scientists peer into the very heart of matter, large-scale physics facilities like the Relativistic Heavy Ion Collider (RHIC) play a significant role in training the next generation of world-class physicists. These scientists often make important contributions that fuel the economy, provide for security, and pave the way to a healthier, brighter future. Indeed, more than half the students who earn doctoral degrees in nuclear physics in the U.S. go on to work in fields as diverse as national security, medicine, energy generation, space exploration, finance, and more.

As of 2012, more than 350 students have earned Ph.D.’s based in part on their research at RHIC; hundreds of more are in the pipeline. Here are some of their stories.

Anuj Purwar

Anuj Purwar

Anuj Purwar, who conducted research as a member of RHIC’s PHENIX collaboration to earn his Ph.D. in experimental nuclear physics from Stony Brook University, now applies the knowledge and skills he gained to further R&D in using radiation to treat cancer. He’s a senior staff physicist at Varian Medical Systems, based in Palo Alto, CA.

“I use my knowledge of radiation detectors, linear accelerators, and nuclear physics that I got from RHIC to come up with innovative solutions to the problem of delivering high doses of ionizing radiation to cancerous tumors while minimizing collateral damage to normal tissues,” he said.

Specifically, he works on compact linear accelerators and gaseous ionizing radiation detectors to improve the steering and focusing of cancer-killing beams and ensure that optimized doses of radiation can be delivered precisely to tumors, as well as the design of radiation shielding.

“Although there are differences—e.g., RHIC is about 2.4 miles around, operates at 200 billion electron volts, and uses superconducting magnets for beam steering, while the Varian linacs are about 1 meter long, top out at 22 million electron volts, and use ordinary electromagnets—my experience at PHENIX with accelerator physics applies directly to what I do every day.”

Purwar’s postdoc work on silicon pixel detectors and data acquisition equipment at Los Alamos National Laboratory—still as a member of RHIC’s PHENIX experiment—also has a direct bearing on his current job, as do the types of computational simulations performed for analyzing nuclear physics experimental data.

“My experience at RHIC prepared me very well for R&D in medical physics.”

Christine Nattrass

Christine Nattrass

Christine Nattrass first arrived at Brookhaven as part of Yale University’s relativistic heavy ion group, where she worked on RHIC’s STAR detector.

“It's not always easy working with hundreds of collaborators who are there to critique your work. There is no way to make 500 people happy, but the product of this collaborative process is usually better than the original,” Nattrass said. “Over the course of my Ph.D., I got much better at accepting and giving constructive criticism, and I really enjoyed working with people around the world.”

After earning her doctorate, Nattrass continued her career studying particle collisions at Switzerland’s Large Hadron Collider, but remained within the RHIC community. She is now a collaborating member of ALICE, one of LHC’s detectors that, like RHIC, explores the properties of the quark-gluon plasma thought to have existed shortly after the Big Bang. She also collaborates on RHIC’s PHENIX detector.

Recently she’s expanded her expertise to teaching, as an assistant professor of physics at the University of Tennessee at Knoxville. The skills of collaboration, constructive criticism, and communication are an essential part of the job.

“What I really want to do is make science accessible to everyone—and get my students as excited about science as I am,” she said. “I think the world would be a better place if more journalists, politicians, lawyers, businessmen—everyone—had a better understanding of science.”

More Student Stories

Monika Sharma

RHIC’s STAR detector was an early home to particle physicist Monika Sharma, where she first became acquainted with the massive amounts of data produced by modern-day accelerators. She worked on the state of the art RHIC computing facility (RCF) that supports computing needs of the STAR experiment and others.

“This was the first time I was working on an experiment that involved such large amounts of data,” she said. “Working on RCF was a fantastic learning curve which eventually gave me a strong foundation of analyzing data and publishing research papers in peer-reviewed journals.”

With this experience, Sharma moved on to a research associate position at physics department in Vanderbilt University, jointly working with the Advanced Computing Center for Research & Education, or ACCRE, which collects, stores, and disseminates data from the Large Hadron Collider’s CMS detector to researchers all over the world.

At ACCRE, Sharma and a team of other scientists receive shipments of terabytes of data from Geneva, where they reconstruct and store it at Vanderbilt’s Tier-2 facility. The group also stays on call 24 hours a day, 7 days a week, when CMS is active, to troubleshoot any potential data loss crises and keep systems running with minimal interruption.

“The CMS experiment at the LHC generates mountains of data in 3-4 weeks of heavy-ion running. The hands-on experience I gained working with a large-scale computing facility at RCF gave me the tools and skills I needed to approach the ever-increasing data needs at ACCRE.”

M. Munir Muniruzzaman

M. Munir Muniruzzaman transferred his skill at analyzing RHIC’s particle collisions to developing algorithms for a small company using fast neutrons to detect explosives and illicit materials such as drugs. He has worked on detectors for the Departments of Homeland Security and Defense, U.S. Customs, and a number of commercial companies.

“Then, after three years helping save lives from terrorists, I learned that a physicist can also save lives in danger of being cut short by cancer,” said Muniruzzaman. Joining a company working on a robotic radiosurgery system that directs x-rays with pinpoint precision, Muniruzzaman is now in charge of using physics-based computer simulations to calculate doses for this innovative cancer radiation treatment.

Andrew Hoover

Computer simulations and an understanding of radiation play a role in the work of RHIC alumnus Andrew Hoover at Los Alamos National Laboratory, where he’s helped design arrays of sensors for analyzing the composition of nuclear materials as part of an effort to track their origins and keep them out of terrorists’ hands. “My skills here are applied across several projects involving radiation detection — even a space-based gamma-ray burst experiment on a NASA mission.”

Jane M. Burward-Hoy

The space environment, filled with cosmic rays and energetic particle bursts, seems particularly well suited to the application of skills learned at RHIC. Jane M. Burward-Hoy, who now also works at Los Alamos, measures particle distributions in the outer edge of Earth’s radiation belts to more accurately predict the space “weather” environment. The ultimate goal: Help protect Earth-orbiting satellites from damage to their electronic monitoring systems — which help protect us on Earth.

Burward-Hoy attributes her career path to the terrorist events of September 11, 2001 — the day she was scheduled to defend her Ph.D. thesis. “I decided I really wanted to contribute to national security and make a difference,” she said.

Felix Matathias

RHIC alum Felix Matathias hopes to have his impact in the world of finance — using data-analysis and computing skills to pin down pricing information for rarely traded bonds in a less-than-transparent market. “Because of my work analyzing very limited early RHIC data, I was no stranger to working with sparse and rare data trying to extract a statistically significant signal. My physics training also provided me within valuable technical skills in computer programming, which I now apply every day.”

Robert Welsh

Being an outsider in a new field can be a real asset, says Robert Welsh, who transferred skills gained through 10 years of experimental particle and nuclear physics to the field of neuroscience. “My training in physics has greatly contributed to my ability to think outside the box and to learn new experimental and theoretical concepts.”

Welsh is involved in a number of studies using functional magnetic resonance imaging and other brain-scanning techniques. He specializes in tweaking experimental designs to maximize the detector’s sensitivity to the “signal” he wants to measure — for example, a change in brain activity in response to different facial expressions or cognitive tasks — for studies of psychiatric diseases such as schizophrenia and obsessive compulsive disorder, as well as amyotrophic lateral sclerosis (“Lou Gehrig’s disease”) and cancer.