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Abstract

We propose a novel symmetrization method for solving the transport of intensity equation (TIE) using fast Fourier transforms for
situations where the input images may or may not exhibit spatial periodicity. The method is derived from the analysis of intensity
conservation law and the internal symmetry of the TIE, and is illustrated for both a computational and an experimental data set. © 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of phase retrieval from intensity measure-
ments plays a key role in many fields of physics, such as
optics, electron- and X-ray microscopy, diffraction, and
NMR-tomography. In transmission electron microscopy,
knowledge of both phase and amplitude enables direct
mapping of the electrostatic and magnetostatic potentials
of thin foil. In optics, holography, introduced originally by
Gabor (1948), provides one approach to the problem of
phase recovery. This technique is based on the analysis of
experimental interferograms and is technically demanding.
Teague (1982, 1983) suggested another essentially non-
interferometric approach when he demonstrated that the
phase of wave can be recovered from intensity measure-
ments /(x,y) by properly solving the transport of intensity
equation (TIE), derived from the free space Helmholtz
wave equation in the paraxial wave approximation. The
TIE formalism is not restricted to coherent waves and
works well for partially coherent beams, which makes
phase reconstruction accessible to wide range of light- and
electron-beam based experiments.

In the paraxial approximation, the propagation of mono-
chromatic wave can be described in the coordinate system
(r,,2), where z denotes coordinate along the optical axis,
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and r is the position within plane normal to the optical axis.
Taking the imaginary part of the paraxial wave equation
(Gureyev and Nugent, 1996; Paganin and Nugent, 1998)

(Vi + 2ika/8z)-«/1(rl,Z)exp[iq&(ri,z)] =0 (1)
yields the TIE derived by Teague (1983) as
. aI(rL ) Z)
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where k = 27/A is the radiation wavenumber, and ¢(r |, 2),
the phase to be retrieved. The terms I(r,z) and 9,I(r | ,z)
are the irradiance and its longitudinal derivative. The V
differential operator operates only in the plane normal to
the propagation direction. The TIE relates the forward
propagation of the beam intensity to the lateral variations
of the beam phase. The TIE is second-order elliptical
differential equation and can be reduced further to the in-
homogeneous Poisson equation by the introduction of an
auxiliary function ¢ (Teague, 1983), defined by (dropping
the argument (r |, z) from here on):

Vig=1V, ¢ 3)

This assumption means that vector S = IV | ¢ will be further
treated as vector field of some scalar potential ¢s. Paganin and
Nugent (1998) suggested to associate it with Poynting vector
S(r ,z). The TIE (2) then reduces to Poisson equation

Vig=—ko.l €
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Implementing the TIE formalism in practice has been difficult.
Several different solution methods for Eq. (2) have been
suggested (Teague, 1983; Roddier, 1990; Gureyev and
Nugent, 1996; Paganin and Nugent, 1998). However, only
in special cases are the available algorithms of phase recon-
struction sufficiently fast for reasonably sized images. Some
algorithms only work well when zero image intensity is
assumed outside the image area (Gureyev and Nugent,
1996), which may not reflect all real experimental situations,
or will require the use of special apertures. Paganin and
Nugent (1998) proposed an alternative definition of phase
via the Poynting theorem and showed that TIE can be used
with some limitations for general case, including electro-
magnetic fields. With assumption (3), a formal solution to
TIE (2) is given by (Paganin and Nugent, 1998)

-2
¢(rl,z>=—kvf~{vi[u]}, 120 (5

where V2 is the inverse Laplacian operator calculated by
whatever appropriate method. The intensity / is assumed to
be strictly positive. This solution will be sensitive to boundary
constraints.

2. Theory
2.1. Fourier transform

It has been shown (Gureyev and Nugent, 1996; De Graef,
2001) that serious mathematical problems in solving the TIE
with finite-elements methods can be bypassed by computing
the inverse Laplacian V. ? via fast Fourier transforms
(FFT):

q #0 (6)

VI2u(x y) :_F—l[ F[M(.X,y)] ]

|(h ?

The symbols F and F~' represent here forward and inverse
Fourier transforms, and the vector q, is the frequency
vector normal to the propagation direction. However, any
use of computer involves sampling data and hence periodic
continuation in reciprocal space, and hence approximation
of input images with Fourier series. This implies spatial
periodicity of the input images, which is not generally
valid for an experimental data set. Therefore, the question
whether the FFT approach to the TIE phase problem is
correct and unique in terms of the Dirichlet—Neumann
boundary problem remains unanswered. Note that the exis-
tence of unique solution up to an arbitrary additive constant
for the TIE problem was proven only for special case
(Gureyev and Nugent, 1996), in particular, assuming zero
intensity outside the image area, which is equivalent to
recording an image through an opaque aperture.

2.2. Boundary conditions and energy conservation law

In the present paper, we provide the symmetry analysis to

the TIE. We prove that under the new Neumann boundary
condition valid for a wide range of objects, specified below
and derived from an intensity conservation law, the phase
solution of the TIE obtained by FFT methods is correct and
unique up to a constant. We propose also simple symme-
trization rule for phase reconstruction that is free from edge-
spoiling/aliasing effects in the entire area of an experimental
image. This approach is especially important for correctly
mapping magnetic induction in magnetic materials.

We start with analysis of the intensity conservation law,
which is assumed to be valid for the TIE (Teague, 1982;
Gureyev and Nugent, 1996):

9. J J I(r,,z)dxdy =0 0)
D

This equation expresses that the total irradiance I(r ,z) in
planar image area D(x,y) transverse to the z-direction of
wave propagation is conserved when recorded at z = z,
and z = 7y + Az. We integrate both sides of the TIE expres-
sion given by Eqgs. (2)—(4) over the area D:

JJDViL/f(rL,Z)d’Cdy: —kaZJIDl(ri,z)dxdy )

It is clear that the surface integral of V2 yin Eq. (8) over the
area D must vanish because of assumption (7). We also take
advantage of the mathematical identity

” V2 u(x, y)dx dy = fﬁ[n~Viu]ds = §> 9 s )
D on
L L

which can be derived from Green’s formula (Piskunov,
1965); here n is the outward unit normal to the contour L =
aD of the domain D. Using this identity, Eq. (8) can be
written as

—kazjj I(r,,z)dxdy = % a—"[Ids (10)
D on
L

It is just an expression of energy conservation law, which
should replace Eq. (7) in more general case. Let us now
analyze the conditions under which the right-hand side of
Eq. (10) will vanish. By taking Egs. (7)—(9) into account
and the identity dy/on = [d¢/dn from Eq. (3), we get

ﬁ;z—f‘/ds=§l[n-vl¢]d5=§l%ds=0 (11)
L L L
Eq. (11) expresses that the function ¢ does not ‘leak’
through the boundary L of the domain D, if Eq. (7) holds
valid, and represents new ‘natural’ integral boundary condi-
tion for the solution of the TIE (2). With definition of
IV | ¢ =S(r,,z) as the Poynting vector or force vector
field Egs. (11) and (12) can be rewritten as

_kazjj I(FL,Z)@dy:§n.S ds=0 (12)
D
L

which states that intensity conservation law (7) will be valid
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Fig. 1. Even (a) and odd (b) symmetric extensions of the original image
MNOP satisfying the internal TIE symmetry and the Neumann boundary
condition. Images (c) and (d) show the behavior of the function I-d¢/dn
across the boundary L for the extended sampling data array.

only if the dissipation of energy flow S through the contour
L is negligibly small. In practice, it is possible to choose the
image size D large enough comparing to object size, suffi-
cient to null Eq. (12). Note that Gureyev and Nugent (1996)
extensively studied special case of the boundary problem
under the assumption of ‘zero intensity’ I(L) = 0 sufficient
to satisfy Eqgs. (11) and (12). They showed that the TIE
solution in this case is unique up to a constant; however,
the numerical approach to solve the TIE based on Zernike
polynomials (Gureyev and Nugent, 1996) appears to be
difficult in practice. In addition, it seems that such condition
may not be consistent with the general assumption /(D) # 0
(L C D) used to solve the TIE problem via the formal solu-
tion of Eq. (5). Most of these complications can be bypassed
when using Eqgs. (11) and (12) under the new Neumann
boundary condition

0V, $(L)] = dp(L)/on = 0 13)

and /(L) finite function, which will satisfy the integral condi-
tions (11) and (12) automatically. This is sufficient to get
unique phase solution ¢ (D) of TIE problem described by
Egs. (2)—(4) and (13) apart from a constant term (Sneddon,
1957) equal, for instance, 2mn (n-integer) or any other
constant. The alternative Neumann condition to Eq. (13)
have been analyzed by Roddier (1990). However, Eq. (13)
is a ‘stronger’ boundary condition than conditions (11) and
(12). Hence, we have to define a class of images and objects,
satisfying Eq. (13). We shall call it as imaging of objects
wrapped with uniform phase support. Indeed, there exists a
wide class of images with non-uniform illumination of
objects, for which the phase behavior at circumference of
image [L — 8, L] will tend to be a constant (i.e. V| ¢ = 0 at
6 — 0) and, hence, d¢p(L)/dn = 0. As follows from Eq. (2),
the intensity variation within the same boundary layer of
width 6 close to the image perimeter will also vanish, i.e.

dl(L)/dz = 0. Examples of this class of images will be given
later.

2.3. Symmetrization rule

Now we investigate the numerical FFT-solutions (5) and
(6) of TIE phase problems (2)—(4) with the new Neumann
boundary condition (13) in the limit of 6 — 0. This will
reflect a loss of translational periodicity of the image and,
hence, the correct use of numerical FFT will require some
symmetrization of input images. It will be shown later that
there exists an appropriate symmetrization of the original
image intensity I(r,) distribution, automatically satisfying
conditions (11)—(13).

We shall assume that the image area D(x, y) is square with
N X N sensing elements, such as the detector area provided
by a CCD-camera. In this case, the contour integral in Eq.
(11) splits into four line integrals taken along the x and y
directions for the closed loop L, as shown by Eq. (14) and
Fig. 1(a) and (b)

T [ S N

(14)

It is clear that the contour integral in Eq. (14) will vanish
under the trivial assumption /(L) = 0. Another less trivial
and more useful boundary condition can be realized if
symmetry criteria are applied both to Eq. (14) and the struc-
ture of the TIE (2). Notice that TIE has intrinsic symmetry,
i.e. invariance under the transformation / — —/. Taking
into account boundary condition (13), the phase ¢(x,y)
can symmetrically be extended outside of original image
D only as even function of the coordinates, regardless of
the nature of I(x,y) (odd or even). This means that we can
extend the image I(x, y) from the square area in which it was
measured to square MNOP of double dimensions along both
x and y (Fig. 1(a)). Since we wish to use the FFT algorithm
to obtain the fast numerical solution of the equation, we
must periodically extend the image so that both internal
symmetries of the TIE and the boundary integral equation
(11) are satisfied. It is easy to see that there are two possible
symmetric extensions, shown in Fig. 1(a) and (b). The first
extension use simple mirror planes m along the bottom and
right edge of the input image M'N’O'P to obtain periodic
continuation of the image. The second employs the I — —1
invariance of the TIE and replaces the mirrored intensity by
its negative in the lower left and upper right quadrants. If we
group the integrals over the vertical edges in Eq. (14), we
obtain

Yo
|" 10 matetm.0 = iy = 0 (1)

for the even (top sign) and odd (bottom sign) symmetric
extensions (and similar expressions for the integrals along
the x-direction). The even extension implies that /-9, ¢ is an
odd function across the integration contour, as shown in
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Fig. 2. Simulated phase reconstruction based on a randomly selected ampli-
tude image (a) and a two-level phase function (b); under-focus (c) and over-
focus (d) images were computed according to Eq. (16); image (e) represents
the derivative d1/dz. The reconstructed phases are shown in (f) for the even
symmetrization, (g) for a standard reconstruction without symmetrization,
and (h) for the odd symmetrization.

Fig. 1(c); for the odd extension I-9,¢ is even (Fig. 1(d)).
Other possible image extensions are inconsistent with the
translational periodicity required by the Fourier series
approximation.

Both symmetrized image extensions satisfy all boundary
conditions and the internal symmetry of the TIE equation.
They are also periodic extensions so that the FFT formalism
can be applied without introducing edge effects. For the
even extension the function /-9,,¢ smoothly crosses zero at

the edge L, as shown in Fig. 1(c). However, the odd exten-
sion has singular zero points all along the edge (Fig. 1(d)) at
the limit & — 0; the result of this singular point is that edge
effects may continue to persist in the reconstructed phase,
similar to the edge effects due to non-periodic images. For
this reason the even symmetric extension (Fig. 1(a)), which
does not suffer from this artifact, is preferred.

3. Experimental

To demonstrate the new TIE solution method we use two
images for the amplitude A(r,) and phase(¢(r,): a bright
field image (A%) of crack bridging in LaAlO; thin foil
(Fig. 2(a)), and simple phase function (¢) equal to —1 or
+1 radians, with a linear step boundary (Fig. 2(b)). Out-of-
focus images for the wave function ¥ = A exp(i¢) created
from these two images can be computed using the following
expression (De Graef, 2001):

AA
I(r 1 Af) = A% = Z—qfvi-(Azws) (16)

where Af'is the defocus in TEM experiment. The pre-factor
AAf/27 was taken equal to 0.01. The under-focus and over-
focus images computed from this relation are shown in Fig.
2(c) and (d). The images provide only amplitude informa-
tion about the complex object; the linear feature associated
with the phase discontinuity is just barely visible in the
computed images. The image in Fig. 2(e) was calculated
from their difference, and approximates the right-hand
term d1/9z of the TIE (2). The phase associated with the
amplitude information available in the images (Fig. 2(c)
and (d)) was recovered using three different methods: (1)
the even symmetrized extension (Fig. 2(f)); (2) direct FFT
computation without symmetrization (Fig. 2(g)); (3) the odd
symmetrized extension (Fig. 2(h)).

The even symmetrized extension provides the best phase
reconstruction with no detectable edge effects. The differ-
ence between the reconstructed phase ¢’ and the input
phase ¢ can be described in terms of the parameter XY=
(¢' — ¢>)2/N2, where the summation covers all pixels of the
N XN (N = 512) image. For the even symmetrization, we
have }* = 1.9 X 10>, For the odd symmetrization we have
X2 =47X 10_1, while for the direct FFT reconstruction
without periodic continuation we have XY =43%x107".
The direct FFT method suffers from edge effects (arrowed
in Fig. 2(g)) and cannot reproduce the flatness of phase
difference across the step-like phase boundary (Fig. 2(b)).
The odd reconstruction (Fig. 2(h)) seems suffering from
similar problem, but not introducing edge effects inherent
to direct FFT method. The even symmetrized phase ¢’ (Fig.
2(f)) does not suffer from edge effects and is nearly identical
to the input phase ¢. The reconstructed profile across the 2-
radian step in the phase map is about nine pixels wide, as
opposed to the input profile that was only one pixel wide.
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Fig. 3. Experimental phase reconstruction for a rectangular Permalloy
island supported on a membrane. The under- (a), over- (b), and in-focus
(c) images were obtained in a JEOL 4000EX microscope. The difference
between (b) and (a) is shown in (d), and the reconstructed phase (using the
even symmetrization method) in image (e). The function cos(10¢) is shown
in image (f). The local orientation of the magnetic induction (proportional
to the gradient of the phase) is shown as a color plot in (g); image (h) is a
magnified image of small-boxed region in (g) with the local magnetization
vectors superimposed on the colored pixels. The small inset in (g) is a color
wheel encoding the direction and amplitude of local magnetization in the
color map.

This blurring of sharp phase edges is due to the 1/q2 low-
pass filter character of the inverse gradient operator A
Fig. 3 shows a practical application of the symmetrized
TIE method to an experimental data set obtained in JEOL
4000EX transmission electron microscope operated at
400 kV. The sample consists of patterned island of Perm-
alloy on support membrane. The island shown in Fig. 3

measures 2 X 1 pmz. The under-focus, over-focus, and in-
focus images are shown in Fig. 3(a)—(c), respectively, along
with the difference image between (a) and (b), which
approximates d1/dz in Fig. 3(d). The reconstructed phase,
using the even symmetrization method, is shown in Fig.
3(e), along with cos(10-¢) in Fig. 3(f) to emphasize the
spatial variations in the phase. Note that phase image (Fig.
3(e)) in fact provides more detail information about the
object than the simple difference image (Fig. 3(d)) just
because the image (d) in first approximation is only a Lapla-
cian (Viq’)) of image (e). The practical use of recovered
phase map (e) and, hence a phase gradient (V,¢) map
become clear, especially in application to the problem of
induction mapping B(x,y) of magnetic materials. Indeed,
the phase gradient is related to the in-plane components
of the integrated magnetic induction B (Aharonov and
Bohm, 1959) and is shown as color plot in Fig. 3(g); the
color wheel indicates the correspondence between color
and magnetization direction. Fig. 3(h) shows vector plot
of the magnetization pattern for boxed area in Fig. 3(g)
(white square) which contains both vortex and cross-tie
domain wall. Correct induction mapping at nanoscale is
important for general understanding of remagnetization
process.

4. Conclusion

We have demonstrated that the TIE-FFT method can be
used to retrieve phase information and, in particular, to map
the local induction distribution (Fig. 3(g)) in magnetic
materials. In comparison with the off-axis electron holo-
graphy it is less technically demanding method not
requiring a bi-prism. The second advantage of our approach
apart from its evident simplicity is that the phase surface
recovered by TIE-FFT solution is a smooth and unique
‘scalar’ function (up to a constant in the absence of intensity
zeros) in accordance with Eq. (3), whose value may vary
multiples of 7 over the entire object area, as expected
from the well-known Aharonov and Bohm (1959) phase
relation to electromagnetic potentials. For comparison, the
phase information in electron holography is usually
recovered as inverse of trigonometric function tan(¢) =
x/y with a smooth solution as ¢ = arctan(x/y) that exists
only on (—/2,m/2) interval, and hence total phase recon-
struction has to go through the tedious and sometimes
ambiguous phase-unwrapping procedure.

In summary, we have proposed new symmetrized solu-
tion method for solving the TIE using FFT. The method is
fast, reliable and insensitive to noise. It provides an exact
phase solution for periodic objects and a good approxima-
tion for aperiodic objects. We have also described a wide
range of experimental images with non-uniform illumina-
tion of objects, for which the intensity variations recorded
at the image circumference can be negligibly small, i.e.
dI(L)/dz = 0. For this class of images, the symmetrization
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rule will also provide a unique apart from a constant term
TIE-FFT phase solution.
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