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Abstract

We propose a method of Lorentz phase microscopy for in situ studies and imaging magnetic materials in

transmission electron microscopy (TEM) based on the solution of the magnetic transport-of-intensity equation. We also

describe the appropriate way of solving this equation that may be useful for understanding and practical use of non-

holographic methods for phase retrieval in electron microscopy, especially in imaging magnetic materials. The method

is simple, since it is primarily based on classical Fresnel imaging. On the other hand, it is quantitative and can be applied

in any TEM without changing the basic hardware. Therefore, it may well find important practical applications in

ultramicroscopy and modern magnetic materials research.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the early sixties, Lorentz imaging in
transmission electron microscopy (TEM), re-
corded in Fresnel mode, has been known as a
simple classical method to image magnetic materi-
als. Its value in the analysis of domain walls in
magnetic materials has been well documented, for
example, by Hirsch et al. [1]. Experimentally, the
contrast from domain walls is observed when the
TEM image is recorded at small defocus, provided
that the sample is not magnetically saturated. This
implies that the TEM’s objective lens must either
be switched off or little exited. Unfortunately, this
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straightforward approach does not yield informa-
tion on the local magnetization within domains in
crystalline magnets and/or magnetization ripple in
magnetic foils and films. Therefore, it was never
considered as a quantitative method to analyze the
domain structure itself. On the other hand,
Foucault imaging can be more helpful for visualiz-
ing the magnetic domain structure, although the
results are more qualitative and very sensitive to
the exact position of the objective aperture. To
overcome these limitations the new methods for
imaging magnetic domains at different length
scales have been developed, such as differential
phase contrast (DPC) microscopy [2], the magne-
to-optic Faraday and Kerr effects (MOKE) [3],
magnetic force microscopy (MFM) [4], off-axis
electron holography [5], scanning electron micro-
scopy with polarization analysis (SEMPA) [6], and
d.
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magnetic circular dichroism [7]. Not all of these
methods can display a domain structure at
nanoscale resolution, and most usually require a
non-trivial experimental setup, including special
hardware and software.
In this paper, we analyze the mechanism of

magnetic contrast in defocused images, hereafter
called as magnetic refraction, and show how the
classical Fresnel imaging can be upgraded to the
level of Lorentz phase microscopy. This combined
method may be compared with other advanced
magnetic imaging techniques in terms of resolu-
tion, simplicity, and the ability to quantitatively
visualize local magnetic induction. Our approach
is based on derivation of the magnetic transport-
of-intensity equation (MTIE), and is illustrated
with practical examples of magnetic induction
mapping of patterned permalloy and Co islands as
well as Nd–Fe–B hard magnets.
Fig. 1. Schematic diagram of the electron-beam deflection and

wave front curvature due to scattering by non-magnetic (left

side) and magnetic (right side) potentials of a sample imaged by

Fresnel microscopy: (a) original flat front, (b) sample, (c) wave

front at the exit plane, (d) second phase derivative as phase

Laplacian, and (e) phase-contrast imaging qI=qf approximated

as intensity difference, recorded at zero and small defocus Df

value.

Fig. 2. Expected profiles of total phase map jtotðrÞ for a

magnetic sample, as shown in Fig. 1, due to contributions of

electrostatic (je) and magnetostatic (jm) phase shifts. The

relative contributions to total phase shift depend on the shape

of magnetic sample and, in particular, the magnetic domain

structure. However, for most applications of magnetic-phase

imaging, except for small nanoparticles, the electrostatic compo-

nent is small and may be neglected (for details see the text).
2. Theory

2.1. Intuitive description

The domain wall contrast in defocused images
of magnetic materials has been well described in
the classical work of Hirsch et al. [1] in terms of the
Lorentz deflection angle (yL), experienced by the
incident electrons passing through the magnetic
sample. The typical value of the Lorentz angle is
very small, yLB10�5 rad, that is about 100 times
less than typical Bragg diffraction angles in TEM
(yBB10�3 rad). Elementary wave consideration
strongly suggests that the originally flat electron
wave front experiences a local rotation upon
exiting the sample surface by the same angle, yL;
within magnetic domains, as schematically shown
in Fig. 1c (right side). The local deflection of
electrons will redistribute the observed intensity
(Fig. 1e), forming a basis for the classical
explanation of such a ‘‘magnetic’’ refraction effect.
For comparison, in Fig. 1e (left side) we also show
the intensity redistribution due to optical ‘‘light’’
refraction of the same beam by a non-magnetic
sample. For simplicity, hereafter we shall use
an approximation of small defocus, when the
secondary effects of beam interference fringing at
domain wall positions are not yet apparent.
Because of the wave particle duality of electrons
an alternative description to Lorentz deflection
yLðr; zÞ is the approach of wave front curvature
mapping jðr; zÞ (Fig. 1c). In general, this mapping
will depend on the particular orientation of the
domains within magnetic elements. For example,
the electron-wave phase front for patterned
magnetic elements shown in Fig. 1 is expected to
be as presented in Fig. 2 due to the simultaneous
contributions of optical and magnetic refraction
components. In practice, the wave front curvature
can be retrieved using holographic principles
introduced by Gabor [8] for light optics. In the
field of electron microscopy remarkable progress
was achieved by the off-axis electron holography
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(see for example [5,9,10]). However, this method
requires highly coherent electron sources, while
the noise and limited field of view of interfero-
grams (typically, p1 mm [9]) severely hampers its
application over a larger scale.
On the other hand, a consideration by compar-

ing the intensity difference Iðx; z þ DzÞ � Iðx; zÞ at
small defocus Dz (Fig. 1e) suggests that defocused
intensity might be proportional in first approx-
imation to the negative value of phase Laplacian
(Fig. 1d). A similar idea was explored by Teaque in
light optics, who suggested a non-interferometric
approach to the phase-retrieval problem via
solution of the so-called transport-of-intensity

equation (TIE), based on intensity measurements
at two closely spaced distances Iðr; zÞ and Iðr; z þ
DzÞ [11]. Simultaneously, Van Dyck developed a
similar approach for electron microscopy [12].
Later, several researchers examined this approach
[13–17] in applications to optical refraction by
non-magnetic objects. Meanwhile, a theoretical
extension of the TIE concept for imaging magnetic
materials was pessimistic [14], leading to the
conclusion that magnetic induction (B) cannot be
retrieved from the intensity measurements, except
in special cases with non-vanishing intensity
gradients rI � ðrÞa0; when ‘‘the product
rI � ½r � fV	a0’’, with the vector quantity r�
fv identical to the vector potential ðe=cÞA [17].
However, this theoretical assessment does not
logically agree with the experimental observations
in Ref. [18] as well as our consideration of
magnetic refraction (right side, Fig. 1). To
reconcile the difference in theory, we examine the
Aharonov–Bohm (AB) phase shift, which was not
taken into account in Ref. [14] and not well
clarified in Ref. [17], together with the continuity
equation, and derive a new so-called MTIE
suitable for most magnetic imaging applications.
We note that most of our results can be directly
compared with electron holography data [5,9,10].

2.2. MTIE and lorentz phase imaging

In this section, we derive the MTIE approach
from first principles and show how the intensity
measurements may be used for magnetic induction
mapping in Lorentz phase microscopy.
Consider the stationary wave field describing
the propagation of a monochromatic electron
wave, c ¼ A expðikzzÞ; with complex amplitude
A ¼ aðr; zÞexp½ijðr; zÞ	 along the optical axis z of a
TEM column. In a typical setting of Lorentz
microscopy fast electrons with a total energy of
E ¼ eU þ m0c

2 (U : accelerating potential) interact
with small magnetic objects above 50 nm size.
Here jðr; zÞ is a small phase shift

fjjðr; zÞj5jkzzjg experienced by ‘‘free’’ electron
wave at a distance z and position rðx; yÞ in a plane
normal to the optical axis when moving with
nominal phase S ¼ kzz ¼ ðpz=_Þz through the
electromagnetic fields of the sample (Fig. 1). For
free electrons, we also assume kz ¼ 2p=l. Here m0;
pz; kz and l are the rest mass, momentum, wave
number, and wavelength of the electron, respec-
tively. The motion of an almost-free electron wave
obeys the relativistic time-independent Schr.odinger
equation with a solution known as the AB phase
shift [19]. The information about sample fields is
encoded in a phase shift jðr; zÞ of the elastically
scattered electron wave (phase S2 ¼ kzz þ j) to be
compared with a free electron ‘‘reference’’ wave
(phase S1 ¼ kzz) propagating far enough from the
magnetic sample. At a certain distance z0 away
from the sample the electromagnetic potentials will
vanish. Then, the AB solution for the phase shift
j ¼ S2 � S1 at z-z0 is reduced to

jðr; z0Þ ¼CE

Z z0

�N

V ðr; z0Þ dz0

�
e

_

Z z0

�N

Azðr; z0Þ dz0; ð1Þ

where the value of the phase shift jðr;zÞ reaches its
limit at zEz0 (‘‘exit wave’’ plane) and will not
change for zXz0; since both waves (S1 and S2)
propagate further in a field-free space. The
quantity CEðEÞ ¼ pg=lU�; with g and U� as
relativistic Lorentz factor and accelerating poten-
tial, respectively, is known as the interac-
tion constant [10,22], which depends only on
the electron energy (for 300 kV electrons,
CE ¼ 6:526� 10�3 rad/V nm), while V and Az

are the electrostatic and magnetostatic potentials
integrated over the electron beam trajectory. For a
field-free space, the continuity equation derived
from the Schr .odinger equation, yields the
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conservation expression ðe_=mÞr � ja2ðr; zÞrSðr; zÞj
¼ 0 for current-density flow j ¼ ðe_=mÞa2rS (or
current-probability flow j0 ¼ a2rS) in field-free
space. Both quantities, intensity I ¼ CC� ¼
a2ðr; zÞ and current density jðr; zÞ; are observable
and measurable quantum-mechanical parameters,
sufficient, in principle, to reconstruct the object’s
phase shift. By taking into account the phase of
scattered wave S2ðr; zÞ ¼ kzz þ jðr; zÞ the continu-
ity equation at zXz0 yields

r � fIðr; zÞ½nzkz þrjðr; z0Þ	g ¼ 0; ð2aÞ

r> � ½Iðr; zÞr>jðr; z0Þ	 ¼ �kzqIðr; zÞ=qz; ð2bÞ

where nz is a unit vector along the beam’s
direction. In paraxial form, Eq. (2a) transforms
to Eq. (2b) with gradient r> operating only in the
rðx; yÞ plane. Eq. (2b) is similar to the optical TIE-
equation [11] and other continuity equations in
physics [20]. However, the phase shift j in Eq. (2b)
now is well defined by the AB phase via Eq. (1). It
agrees well with considerations in Fig. 1 and
makes the MTIE approach different from the
vector phases/potentials analyzed in the literature
[14,15,17]. To obtain information about magnetic
induction encoded in a phase shift, we consider the
in-plane gradient from Eq. (1) as

r>j ¼CEr>

Z z0

�N

V dz0

�
e

Z

Z z0

�N

ðnx@xAz þ ny@yAzÞ dz0: ð3Þ

The interaction constant CEðEÞ has a limiting
value, e=_c for Ebm0c

2: The line z-path integrals
in Eq. (3) at zXz0 define the projected electrostatic
potential and projected in-plane induction, and are
only functions of rðx; yÞ: Using the definition
Bðr; z0Þ ¼ r � Azðr; z0Þ we denote these integrals
as tVin ¼

R
V ðr; z0Þ dz0and tBðrÞ ¼

R
B>ðr; z0Þ dz0;

and re-write Eq. (3) in another form

r>jðrÞ ¼ r>je þr>jm

¼ sr>½tVinðrÞ	 �
e

_
½nz � tBðrÞ	: ð4Þ

Since both path integrals in Eq. (3) are finite, the
variable t introduced in Eq. (4) may be considered
as an effective sample thickness when the electro-
magnetic field is localized near the sample. Direct
substitution of Eq. (4) into Eq. (2b) yields the most
general form of the continuity equation

r> � ½Iðr; zÞr>jeðr; z0Þ	 þ r> � ½Iðr; zÞr>jmðr; z0Þ	

¼ �kzqIðr; zÞ=qz; ð5Þ

where the first and second terms represent,
respectively, two independent mechanisms of
optical (TIE) and magnetic (MTIE) refraction, as
outlined in Fig. 1. The first term in Eq. (5),
associated with the electrostatic field, tends to
zero for samples of constant thickness and of
uniform crystal potential. An estimate of the
relative contributions to the AB phase shift
indicates that the electrostatic component may
only be significant for Lorentz phase imaging
when cobalt or permalloy particle size is less than
B40–60 nm. For patterned magnetic films, this
term is expected to contribute only at the sharp
sample edges (Fig. 1c, left side, and Fig. 2). Hence,
by considering magnetic term as the major
component of the total phase gradient in Eq. (4)
and by temporarily neglecting the electrostatic
term, we obtain the following first-order scalar
equation:

@yðI � tBxÞ � @xðI � tByÞ ¼
_k

e
�
qI

qz
; ð6Þ

which directly relates the defocused contrast,
qI=qz; with in-plane components of projected
magnetic induction tBðrÞ ¼

R
B>ðr; z0Þ dz0 and,

therefore, may be named as MTIE. We emphasize
its similarity to the optical TIE; however, the
mechanism of electron-wave refraction in Eq. (6) is
due to magnetic properties of the sample. For
Lorentz imaging the derivative qI=qz can be
replaced with qI=qf ([22, Chapter 2]). At small
defocus, Df-0; it is approximated by the differ-
ence of two slightly defocused images ½Iðr;þDf Þ �
Iðr;�Df Þ	=ð2Df Þ; while Iðr; 0Þ is an in-focus image.
For better understanding of specific magnetic
phase contrast Eq. (6) can be expressed [21] via
the z component of vector equation:

e½Ir� tBþrI � tB	z ¼ �_kzqI=qf : ð7Þ

Perhaps only the second term, rI � tBðrÞ; was
theoretically discussed in Ref. [14], leading to the
conclusion that magnetic imaging based on
intensity measurements is not feasible. Below, we
show that this term is of minor importance in our
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Fig. 3. The in situ Fresnel imaging of magnetic Co islands of

approximately 7 mm size, patterned on a transparent Si3N4

membrane and recorded at H ¼ 0Oe: (a) under-focus, (b) over-

focus, and (c) in-focus images recorded for the same elements.

The image in (d) shows the map of recovered electron-wave

phase shifts jðrÞ using the MTIE approach. The defocus step

was DfE150mm.
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approach. Indeed, by re-writing Eq. (7) we obtain
the following estimate:

½rotBðrÞ	z ¼ �
_kz

et

qI

Iqf
� ½rIn I � BðrÞ	z

D�
2F0

tl
qI

Iqf
; ð8Þ

where the second term is small for uniform in-
focus illumination and in many other practical
cases. For a typical TEM experiment (U ¼ 300 kV
and tE50 nm), the pre-factor of the first term
in Eq. (8), measured in Tesla, is very large
(_kz = j e j t ¼ 2F0 = tl ¼ 4:136 � 104; F0 ¼ 2:068
�10�15 Wb is a quantum of magnetic flux)
compared to jBjp2:4T for most magnetic com-
pounds. The value of the in-plane gradient,
r>ln I ; is small and agrees well with the
Bouguer–Lambert–Beer’s absorption law In½IðtÞ=I0	
¼ �mt with m as the absorption coefficient. Hence,
the second term in Eq. (8) may be neglected in foils
of constant thickness and/or far enough from the
sample’s sharp edges when r>ln IE0: In accor-
dance with Eq. (8), the remaining term ½rot BðrÞ	z
will produce a strong intensity contrast in defo-
cused images of magnetic materials only in the
areas of significant magnetization curling. For
example, for magnetic vortices, either a very bright
or dark dot contrast is experimentally observed
(Fig. 3a), depending on the direction of vortex
circulation. This first term is also responsible for
the out-of-focus intensity contrast of domain
walls, cross-tie walls, and for ripple contrast in
Fresnel imaging [2,23] of magnetic films. The
second term is important for the non-solenoidal
induction, related, for example, to external field.
Several examples of vortices imaging are discussed
below.

2.3. Solution of MTIE/TIE equations

By introducing the new variables X ¼ ðe=_Þ � tBy

and Y ¼ �ðe=_Þ � tBx in Eq. (7) and using div B ¼
0 we obtain

@xðI � X Þ þ @yðI � Y Þ ¼ �k � qI=qz; ð9aÞ

@xY � @yX ¼ 0: ð9bÞ
In principle, Eqs. (9a)–(9b) with known bound-
ary conditions can be solved by the methods of
differential calculus; however, this is not a trivial
task in the general case of an arbitrary variable
function IðrÞ > 0: By using a vector function for
the magnetic component rjmðrÞ ¼ X ðrÞnx þ
Y ðrÞny we make sure from Eq. (9b) that jm is
differentiable. Then Eq. (9a) transforms into a
standard continuity equation in paraxial form

r> � ðIr>jmÞ ¼ �k � qI=qz: ð10Þ

To solve Eq. (10) an empirical variable rc ¼
Irj [11,14] might be used to convert it to a
Poisson equation rðrcÞ ¼ r2c ¼ �kzqI=qz;
followed by applying well-known algorithms for
solving the Poisson equation. However, in our
opinion, this approach may fail in the general case
of magnetic imaging for the following reasons.
First, the condition c00

xy ¼ c00
yx; required by the

Poisson equation, along with j00
xy ¼ j00

yx; gives a
hidden constraint j0

xðrÞ � I 0yðrÞ ¼ j0
yðrÞ � I 0xðrÞ at

every point of possible jðrÞ-solution. Second, by
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forcing the condition rc ¼ Irj it is necessary to
postulate that the vector field Irj must be
potential and irrotational, since rotðIrjÞ ¼
rotðrcÞ � 0: This will require additional hidden
constraints with no clear physical sense. On the
other hand, in a general 3D-case, the vector field
rc ¼ Irj must be solenoidal, since divðIrjÞ ¼
0: We note that these postulates were little
discussed in the literature; nevertheless, several
researchers (for example, Refs. [11,14,18,22]) used
them for solving the phase-recovery problem.
Meanwhile, this makes clear sense only for light
refraction on the basis of physical assumptions, as
used for the most recent optical phase retrieval in
Ref. [24]. To bypass this theoretical difficulty, for
magnetic imaging we suggest another general way
of solving continuity equations with variable func-
tion IðrÞ > 0: Since there is no analytical solution for
Eqs. (9) and (10) with variable IðrÞ; we take
advantage of fast Fourier methods. Knowing that
the function jmðrÞ is differentiable and j00

xy ¼ j00
yx;

by re-writing Eq. (10) in Poisson-like form

�r2
>jm ¼ kz@z In I þr>jm � r>In I ; ðI > 0Þ

ð11Þ

we obtain the following integral solution:

jmðrÞ ¼ �r�2
> ½kz@z In I þr>jm � r>In I 	; ð12Þ

where the double integration by the inverse
Laplacian operator r�2

> can be performed by any
appropriate method using the expression in brackets
as the scalar image source. Unique phase-solution of
Eqs. (11)–(12) up to some arbitrary constant can be
obtained, for example, by the Fourier transform
using the Neumann boundary condition [25]. When
the second term in Eqs. (11)–(12) is small, as
discussed for the rI � tBðrÞ term in Eqs. (7)–(8),
the solution is obtained in one step as

jmðrÞ ¼ F�1fF ½kz@z In I 	=k2>g; k>a0; ð13Þ

where F and F�1 define the forward- and inverse-
Fourier transforms for the image source given in
brackets, and k> is a frequency vector in Fourier
space. The second small gradient-term can be
included in the refined solution jm by iterating
Eqs. (12)–(13) with the modified image source in
Eq. (13) from Eq. (12). The solution converges in a
few iterations and does not greatly differ from a
simple one-step solution (13). Finally, the pro-
jected tBðrÞ map may be computed from Eq. (13)
using relation (4) as

tBðrÞ ¼ ð_=eÞ½nz �r>jm	 ð14Þ

We note that the structures of Eq. (10) and the
more general Eq. (5) are essentially identical, while
the solution by FT-method using Eqs. (12)–(13)
does not impose any constraints except a reason-
able Neumann boundary condition [25]. Hence,
the total electron-wave phase shift jðrÞ ¼ jmðrÞ þ
jeðrÞ; using both MTIE and TIE approaches, can
be retrieved essentially in the same way. For
applications to magnetic materials, keeping in
mind that the magnetostatic contribution usually
is much larger than the electrostatic one, we
recommend expressing phase gradients in terms
of the projected induction tBðrÞ via Eq. (14) rather
than by the simple phase gradient r>jðrÞ: A more
accurate separation of the potential contributions
to the total phase is discussed below. The above
results can be easily generalized for partially
coherent electron waves [14].
This non-holographic approach for projected

induction mapping in magnetic films is easy for
practical implementation, while most of its results
may be directly compared with the electron-
holography data. For example, induction map
(Fig. 4c), computed from a couple of defocused
Fresnel images (Figs. 3a and b) recorded by CCD
with 512� 512 pixels, takes about 3–4 s for Dell-
PC(500MHz) computer, or 6–8 s for similar image
of 1024� 1024 pixel size. Note that the field of
view in Fig. 3 is about 43� 43 mm2, hence any
retrieval of similar magnetic information from off-
axis electron holograms of 1–5 mm size will require
approximately [43/(1�5)]2=75–1800 holograms,
which is not practical.
3. Applications

3.1. In situ lorentz phase microscopy

Patterned 2D-arrays of magnetic polycrystalline
permalloy and cobalt islands about 25–40 nm thick
were grown on 30 nm thick silicon-nitride mem-
branes supported on silicon wafers by means of
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Fig. 4. The retrieved phase information, shown in Fig. 3d, was

used to reconstruct separate tBx (a) and tBy (b) components of

the projected magnetic induction tBðrÞ; shown by color vector

code (see inset) in the image (c) by neglecting with je

component. The image in (d) shows the distribution of magnetic

flux, well approximated by the contours of equal phase shift, as

proved by the analysis in Fig. 6.
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electron-beam evaporation through a shadow
mask in a UHV chamber. Shadow mask pattern-
ing allowed the growth of cobalt islands of
7� 7 mm2 size (B49000 elements) with translation
spacing of 14 mm in a single deposition step over an
area of about 3mm diameter. Our choice of
samples was motivated by the need for a well-
defined geometry of patterned arrays that are ideal
for in situ Lorentz imaging and studies of magnetic
switching phenomena. It also offers the possibility
of separating magnetostatic and electrostatic
potentials, and of clarifying the physics of
magnetic interactions observed in experiments at
the mesoscopic length scale. The samples were
characterized by conventional TEM using a
300 keV microscope (JEM3000F). All Co-films
had a grain size of about 10 nm and consisted of
mixture of cubic and hexagonal closed-packed
phases with isotropic properties over the film,
which are known to be ferromagnetic. For in situ
magnetizing experiments, Fresnel imaging and
Lorentz phase imaging (see Section 2.2) were
performed using the same magnetic field-calibrated
JEM3000F microscope [26]. Since Co grains have
random crystallographic orientation, magneto-crys-
talline anisotropy effects are expected to be weak
[27] and general magnetization behavior versus
applied field will be mostly determined by the
shape-demagnetizing factors of the elements.
Figs. 3 and 5 show the typical results of an in

situ magnetization experiment for Co islands
32 nm thick, as assessed by the EELS thickness
measurement, and recorded at external fields H ¼
0 (Fig. 3) and 28Oe (Fig. 5), respectively. Note
that the magnetization ripple, usually observed at
the demagnetization step (H ¼ 41-14Oe), results
in the nucleation of a vortex domain structure
(Figs. 3a and b) at the lower field. Many more
details (Figs. 4 and 5) about in-plane magnetiza-
tion within the domain structure and the demag-
netizing fields around the samples can be obtained
by Lorentz phase imaging using the new MTIE
approach. The phase, as shown in Fig. 3d, can be
retrieved using Eqs. (11)–(14) discussed in Section
2.3. It provides much rich quantitative informa-
tion. For example, just by visual inspection
(Figs. 4 and 5) we conclude that the presence of
magnetic vortices minimizes the leakage of mag-
netic fields from samples due to the formation of
closure domains. On the other hand, the vortex
domain structure remains quite mobile and easily
follows the variations of the external field (Fig. 5)
by the appropriate motion and deformation of
domain walls. As a result, the hysteresis curve of
32 nm thick Co arrays, in general, remains rather
narrow, reaching magnetic saturation at
jH j > 41Oe, in good agreement with the MFM
data [28]. We note that with the help of non-
holographic MTIE/TIE approach, the recovered
phase (Fig 3d) may be compared with the electron-
holography data, while the magnetic-induction
components (Figs. 4a and b) with the appropriate
data of the differential phase-contrast method [2]
and Foucault imaging.

3.2. Separation of electrostatic and magnetostatic

phase components

In this section we demonstrate a new practical
way (Fig. 6) to separate the electrostatic (je) and
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Fig. 5. Fresnel imaging of the same magnetic Co islands, as shown in Fig. 3, magnetized by in-plane field H ¼ 28Oe: (a) under-focus

image, (b) D½ln IðrÞ	=Df gradient of intensity, and (c) recovered phase map for Co elements. The image in (d) shows the map of

projected magnetic induction, presented both by color and vector code, as calculated from the electron-wave phase shift j (c) using the

MTIE approach. Note a cooperative wavy character of demagnetizing fields due to magnetization of Co islands along the direction of

applied field marked by arrow in (b).
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magnetostatic (jm) components of the total phase
shift, based again on simple measurements of
image intensity. This idea is based on the fact that
the electrostatic phase is directly proportional to
the sample’s thickness according to the AB phase
solution, Eq. (1). On the other hand, the in-focus
intensity absorption contrast, such as shown in
Fig. 3c, is also proportional to the sample
thickness via the Bouguer–Lambert–Beer’s ab-
sorption law (Section 2.2). Hence, by assuming
that jeðrÞBln½I0=IðrÞ	; with IðrÞ being the recorded
in-focus sample intensity, the magnetostatic
component (Fig. 2) can be expressed as a function
jmðrÞ ¼ jtotðrÞ � jeðrÞ ¼ jtotðrÞ � C ln½I0=IðrÞ	;
where C is a fitting constant. The value of the
constant C should be chosen to minimize most of
the phase steps in jmðrÞ map at the sharp sample
edges; for example, such as those marked by
arrows in Fig. 2 (images A and B). This can
be done by constructing a fringe map as
cos½Nm � jmðrÞ	 ¼ cosfNt � jtotðrÞ � Ne � C � ln½I0=
IðrÞ	g; with Nm ¼ Nt ¼ Ne ¼ const as phase-am-
plification factors defining any suitable 2p=N-
phase resolution. Once such a constant C is found,
and the ‘‘unknown’’ phase jeðrÞ ¼ C � ln½I0=IðrÞ	 is
subtracted, the remaining map appears to be pure
magnetostatic phase jmðrÞ: This is illustrated in
Fig. 6 by applying the phase separation process to
the phase map shown in Fig. 3d. To quantitatively
estimate the balance of the components in total
phase, we suggest taking one more step. By
adjusting the same density of fringes in the cos½Ne �
jeðrÞ	 and cos½Nm � jmðrÞ	 maps with Ne ¼
0:02520:03 and Nm ¼ 0:0005 (Figs. 6a and b),
we readily found that the ratio of jjej=jjmj
contributions (Figs. 6c and d) is about
Nm=Ne ¼ 0:0005=ð0:02520:03Þ ¼ 0:01720:020; i.e.
Eð1:722:0Þ%. Hence, the magnetic phase jm

(Fig. 6d) contributes to the total phase as much
as 98.0–98.3%. This result agrees well with
a theoretical estimate for 32 nm-thick magnetic
Co elements of 7 mm size: jjej=jjmj ¼ ðCE � V �
tÞ=½ðe=_Þ � t � B> � DxÞ	 ¼ 0:0199; i.e. E2:0%, under
assumption of the following Co parameters:
magnetic induction Bsatð298 KÞ ¼ 1:78T; calcu-
lated inner potentials V ¼ 29:4 (FCC structure)
and 29.6 (HCP) Volts, using known F0 0 0 electron
structural factors [29]; and Dx ¼ 3:5 mm, as follows
from the geometry of magnetic vortices shown in
Fig. 4.
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Fig. 6. Results of separating electrostatic (je) and magneto-

static (jm) contributions to total phase shift using the phase

map and in-focus image: (a) electrostatic phase as cos(Neje)

with relative amplification factor Ne ¼ 0:025; (b) magnetostatic
phase as cosðNmjmÞ with relative amplification factor Nm ¼
0:0005: Pure electrostatic (c) and magnetostatic (d) phases were

separated using the procedure described in the text. Note that

the relative phase contributions to total phase are inversely

proportional to their relative amplification factors.
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Note that the new phase-separation method
described herein does not require any special
knowledge about thickness, magnetic and/or elec-
trostatic properties of sample. It generates fairly
reliable results based on total phase map and in-
focus image intensity, provided that sufficiently
sharp thickness steps at the sample edges are
available. It is also independent of the experimental
defocus used to construct the intensity derivative
DIðrÞ=Df : The above example of phase separation
illustrates that magnetic Lorentz imaging, except
for very small magnetic nanoparticles, in general is
well described by the MTIE equation, while the
electrostatic phase je presented by the TIE term in
the continuity Eq. (5) may be effectively neglected.

3.3. Phase microscopy of Nd2Fe14B magnets

The above discussion on balance of magneto-
and electrostatic contributions can be expanded to
other cases of Lorentz magnetic imaging. Keeping
in mind that magnetic phase jm is the major
component in Eq. (5), we can use a semi-quanti-
tative description for other magnetic objects of
arbitrary shape and thickness, except, as men-
tioned earlier, small nanoparticles. For example, in
Fig. 7a the defocused Fresnel image of a Nd2Fe14B
hard magnet was used to map the projected
magnetization (Fig. 7b). The boundary-value
problem was solved by the Neumann condition
[25]. The image in Fig. 7a was recorded for a
sample of unknown thickness. A non-desirable
contribution of strong intensity variations, caused
by the crystal foil banding (elastic scattering), and
thickness variations (inelastic) close to the dy-
namic range of input CCD-signals, has been
essentially compensated for the recovered phase
by normalization of recorded images (DI=I), as
follows from the MTIE solution given by Eqs. (6),
(8) and (12). Additional confirmation of the phase
retrieval is obtained by comparing an independent
experimental Foucault image (Fig. 7c) and the
calculated one (Fig. 7d), derived from Fresnel
image (Fig. 7a).
Note that practical implementation of this

approach requires additional consideration of
several questions related to the quality of recorded
images. This may be related to (a) noise perfor-
mance, dynamic range and pixel resolution of the
CCD; (b) image drift, defocus, distortions, filtering
and image alignment problems; and (c) new
improvements of MTIE/TIE phase retrieval algo-
rithm for digitally recorded images. Many of them
related to noise and image alignment have been
well addressed in Ref. [22, Chapter 5]. The others
will be a subject for future improvements of the
technique.
4. Conclusion

In conclusion, we have developed a method of
Lorentz phase microscopy for magnetic materials,
based on magnetic transport-of-intensity equation
(MTIE). We found an appropriate solution of this
equation. It was shown theoretically and ex-
perimentally that defocused Fresnel contrast
in ferromagnets is caused by the local curling
of magnetization about magnetic vortices and
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Fig. 7. Weak domain wall pinning by the dislocation pile-up at the low-angle grain boundary in Nd2Fe14B magnet: (a) experimental

defocused Fresnel image used for the reconstruction of projected induction vector map (b) with color inset encoding its amplitude and

direction; the experimental Foucault image (c) may be compared with calculated projected tBxðrÞ component (d) derived from the

image (a) using the MTIE approach.
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domain walls. We also established an experimental
way for the separation of phase components due
to electrostatic and magnetostatic potentials con-
tributing to total phase shift. Our approach is
simple and, therefore, may be important for
general understanding and practical use of non-
holographic methods in the phase-retrieval pro-
blem, especially for quantitative magnetic imaging
by Lorentz microscopy.
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