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Abstract

A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary

shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the

demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the

demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular

cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is

required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given.
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1. Introduction

The calculation of the demagnetizing tensor Nij

is of fundamental importance for a quantitative
analysis of the energy associated with a particular
magnetization state of a magnetized particle. All
micromagnetic simulations rely on the numerical
evaluation of Nij ; often with strong assumptions
about the geometry of the cell. A complete
theoretical scheme for the computation of the
preferred magnetization direction as a function of

particle shape in uniformly magnetized nano-
particles is still lacking. It is generally claimed
that the analytical calculation of the demagnetiz-
ing tensor can be performed only for ellipsoidal
shapes [1]; if we restrict the interest to the volume
averaged demagnetizing tensor (the so-called
magnetometric demagnetization factor), we can
extend the computation to the cubic geometry [2].
It is the main purpose of this paper to show how
we can overcome those apparent limitations, and
extend the computation of Nij to a much broader
class of geometries, namely the faceted particles.

The shape of a particle can be described
mathematically by means of the characteristic
function or shape function, which is equal to unity
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inside the particle and vanishes outside. It was
shown in Ref. [3] how to evaluate the Fourier
representation of the shape function for a faceted
particle. Then, in Ref. [4], this scheme was applied
to the calculation of the vector potential and
electron-optical phase shift arising from a faceted
magnetized particle. The Fourier space approach,
recently introduced and applied to the interpreta-
tion of TEM images of semiconducting and
superconducting materials [5–7], allows us to
calculate the vector potential associated with the
total B-field of the particle, which is the sum of
magnetization M and demagnetization H fields.
The same approach, adapted to the analysis of
magnetized nanoparticles, will be employed here in
order to calculate analytically the Fourier space
representation of the Nij tensor field.

First, the basic concepts underlying the Fourier
space approach will be introduced, in particular
the connection between magnetization and vector
potential and the definitions of the quantities of
interest. Then, to illustrate the validity of the
approach, the Nij tensor for a spherical particle,
which is a well-known result, will be derived.
Finally, to better show the opportunities opened
by this approach, an example of a non-ellipsoidal
particle will be given.

It is worth emphasizing that the method
presented here is of general validity, and does
not rely on any assumptions or simplifications.
This formalism may contribute to a significant
improvement of the accuracy of micromagnetic
simulations, as well as lead to a new fundamental
understanding of the magnetic properties of
nanoparticles.

2. Theoretical model

The expression linking magnetization and mag-
netic vector potential,

AðrÞ ¼
m0

4p

Z
Mðr0Þ �

r� r0

jr� r0j3
d3r0; ð1Þ

represents an invaluable resource for the computa-
tion of magnetic configurations starting from a
known magnetization. In fact, exploiting the
convolution theorem and the linearity of the

vector product operation, Eq. (1) can be written
in 3D-Fourier space as (F represents the Fourier
transform operator):

AðkÞ ¼
m0

4p
MðkÞ �F

r

r3

h i
¼ �

im0

k2
MðkÞ � k: ð2Þ

Hence, the calculation of the vector potential is
reduced to a vector product, if the Fourier
transform of the magnetization is computable.

In general, we can write the magnetization
vector for a uniformly magnetized particle as M0

#m for r inside the particle, and zero outside. We
introduce the dimensionless shape function DðrÞ
which represents the region of space bounded by
the particle surface: MðrÞ ¼M0 #mDðrÞ: The Fourier
transform of the magnetization can be written as
M0 #mDðkÞ; where DðkÞ is the Fourier transform of
the shape function, often called shape amplitude, or
shape transform.

From Eq. (2) we can calculate directly the
Fourier space representation of the vector poten-
tial for a uniformly magnetized particle:

AðkÞ ¼ �
iB0

k2
DðkÞð #m� kÞ; ð3Þ

where m0M0 ¼ B0 is the magnetic induction
corresponding to a magnetization M0:

From the knowledge of the vector potential, one
can easily calculate the magnetic induction, as B ¼
r� A: As any differential operator in real space is
a reciprocal vector in Fourier space, the nabla
operator becomes r-ik: Therefore, the Curl is
translated into a vector product as follows:

BðkÞ ¼ ik� AðkÞ ¼
B0

k2
DðkÞðk� #m� kÞ; ð4Þ

which, exploiting the vector identity k� #m� k ¼
#mk2 � kðk 	 #mÞ; and computing the inverse Fourier
transform, can also be written as the sum of the
induction proportional to the magnetization and
the demagnetization field:

B ¼ m0ðMþHÞ

¼ m0M�
B0

8p3

Z
d3k

DðkÞ
k2

kð #m 	 kÞeik	r: ð5Þ

If we define the demagnetization tensor field (note
that this tensor field has also been called the point-

function demagnetization tensor [8]) Nij by the
component relation: Bi ¼ m0ðMi �NijMjÞ; then we
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find an explicit expression for the tensor by
comparison with Eq. (5):

NijðkÞ ¼
DðkÞ
k2

kikj : ð6Þ

The real space representation, NijðrÞ; can be
obtained by a 3D inverse Fourier transformation.
The tensor field is obviously a symmetric tensor
field, i.e., Nij ¼ Nji:

This definition of Nij automatically satisfies the
condition that the trace of NijðrÞ be equal to unity
inside the particle, and vanish outside. The trace
can be computed as

Tr½Nij � ¼
1

8p3

Z
d3k

DðkÞ
k2

X3

i¼1

kikie
ik	r

¼
1

8p3

Z
d3kDðkÞeik	r ¼ DðrÞ: ð7Þ

In other words, the trace of the demagnetization
tensor field is equal to the shape function. This is
an important result, because it displays the
connection between the demagnetization tensor
field and the shape of the particle in a way that is
difficult to derive from the more commonly used
magnetic surface charge description; furthermore,
the relation can be used to verify the numerical
computation of the tensor field.

2.1. The demagnetization energy

The demagnetization energy can be derived
within the Fourier space approach without invol-
ving explicitly the demagnetization tensor Nij :
Assuming the following definition of the magneto-
static energy:

Em ¼ �
m0

2

Z
V

H 	M d3r; ð8Þ

where the subscript V indicates that the integral is
performed only within the particle volume, and
writing the Fourier representation of the H-field as
in Eq. (5), we obtain

Em ¼
m0M

2
0

16p3

Z
V

Z
d3k

DðkÞ
k2

kð #mkÞeik	r
� �

� #mDðrÞ d3r; ð9Þ

which, after inverting the order of integration,
finally yields

Em ¼
m0M

2
0

16p3

Z
d3k

7DðkÞ72

k2
ð #m 	 kÞ2: ð10Þ

The last integral is obtained using Dð�kÞ ¼ DnðkÞ;
which is always valid since DðrÞ is a real-valued
function.

Similarly, the volume average of the demagne-
tization tensor, the so-called magnetometric de-
magnetization tensor, can be computed within the
Fourier space approach. It can be expressed as

/NSij ¼
1

V

Z
V

d3rNijðrÞ

¼
1

8p3V

Z
d3k

7DðkÞ72

k2
kikj : ð11Þ

2.2. Example computation

As an example, we now compute the demagne-
tization tensor field for a spherical particle, for
which the result is well known. The shape
amplitude for the sphere is given by Beleggia [9]

DðkÞ ¼
4pR2

k
j1ðkRÞ with j1ðxÞ ¼

sin x

x2
�

cos x

x
;

ð12Þ

where j1ðxÞ is the spherical Bessel function of first
order. Substitution in Eq. (6) results in the
reciprocal demagnetization tensor for the sphere:

NijðkÞ ¼ 4pR5 j1ðkRÞ

ðkRÞ3
kikj : ð13Þ

If we scale reciprocal space by the sphere radius,
kR ¼ K; and take the inverse Fourier transform,
we find for the direct space demagnetization
tensor:

NijðqÞ ¼
1

2p2

Z
d3K

j1ðKÞ
K3

KiKje
iK	q ð14Þ

with q ¼ r=R: This integral can be expressed in
spherical coordinates, using the standard expan-
sion for the plane wave

eiK	q ¼ 4p
XN
l¼0

il jlðKrÞ
Xþl
m¼�l

Yn

lmðy
0;f0ÞYlmðy;fÞ;

ð15Þ
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where ðK ; y;fÞ and ðr; y0;f0Þ are the spherical
coordinates corresponding to K and q; respec-
tively, and the Ylmðy;fÞ are the spherical harmo-
nics.

The demagnetization tensor field has six inde-
pendent components, which are explicitly written
as

N11

N22

N33

N12

N13

N23

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ �
2

p

XN
l¼0

Xl
m¼�l

ilYn

lmðy
0;f0Þ

�
Z 2p

0

df

cos2 f

sin2 f

1

cos f sinf

cos f

sin f

0
BBBBBBBBB@

1
CCCCCCCCCA

�
Z p

0

dy sin y

sin2 y

sin2 y

cos2 y

sin2 y

sin y cos y

sin y cos y

0
BBBBBBBBB@

1
CCCCCCCCCA
Ylmðy;fÞ

�
Z

N

0

dKKj1ðKÞjlðKrÞ: ð16Þ

The angular integrals are solved easily by
expressing the trigonometric functions as a linear
combination of spherical harmonics and using the
orthonormality of the spherical harmonics. For
the radial integral we make use of the following
standard integral [10, Eq. 11.4.42]:

Z
N

0

JmðatÞJm�1ðbtÞ dt ¼

bm�1

am
0oboa;

1

2b
0ob ¼ a;

0 b > a > 0;

8>>>><
>>>>:

ð17Þ

where Jm is a Bessel function of fractional order
and we have used the relationship jlðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2xÞ

p

Jlþð1=2ÞðxÞ between spherical Bessel functions and
the Bessel-J functions.

Combining all results and reverting to the
unscaled coordinate r in a Cartesian reference
system ðx; y; zÞ; we find the following expression
for the demagnetization tensor field of the sphere:

NijðrÞ ¼HðR� rÞ

1

3
0 0

0
1

3
0

0 0
1

3

0
BBBBBB@

1
CCCCCCA

�Hðr� RÞ

�
R3

3r5

3x2 � r2 3xy 3xz

3xy 3y2 � r2 3yz

3xz 3yz 3z2 � r2

0
B@

1
CA

ð18Þ

where HðxÞ is the Heaviside unit step function
(HðxÞ ¼ 0 for xo0 and 1 for x > 0). The first term
in Eq. (18) shows the well-known result that the
demagnetization factor of the sphere is equal to 1

3:
The second-term shows that outside the sphere,
the demagnetization field has dipole character. For
a pure magnetic dipole of strength m in a sphere of
vanishing radius, the magnetic induction can be
computed from the demagnetization tensor as

BðrÞ ¼ m0

3#rð#r 	mÞ �m

r3
; ð19Þ

which is the standard expression for a dipole field
of strength m ¼ ðR3=3ÞM:

The magnetostatic energy of the uniformly
magnetized sphere can be computed by combining
Eqs. (10) and (12):

Em ¼
1

2
m0M

2
0R

3

Z
d3K

J2
3=2ðKÞ

K5
ð #m 	 KÞ2: ð20Þ

Without loss of generality we can take #m along the
x-direction, so that #m 	 K ¼ K sin y cos f: The
angular integrals can be shown to be equal to 4p
=3; so that

Em ¼
2p
3
m0M

2
0R

3

Z
N

0

dK
J2
3=2ðKÞ

K
;

¼
2pm0

9
M2R3: ð21Þ
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The volume average of the demagnetization tensor
field over the sphere can be computed explicitly
from Eqs. (11) and (12) as

/NSij ¼
3

4p

Z
d3k

J2
3=2ðkRÞ

k5
kikj : ð22Þ

Working in spherical coordinates, the angular
integrals are easily shown to be equal to ð4p=3Þdij
; and the remaining radial integral is given by:

/NSij ¼ dij

Z þN

0

dx
J2
3=2ðxÞ

x
¼

1

3
dij : ð23Þ

3. Faceted particles

3.1. The shape amplitude

In the remainder of this paper, we will consider
the case of a polyhedral particle. The magnetic
properties of uniformly magnetized polyhedral
particles have thus far only been investigated
using numerical methods. The current interest in
the properties of nanoparticles includes not only
particles which have solidified or were otherwise
formed into a polyhedral shape, but also inten-
tionally shaped particles, such as patterned arrays
of disks, plates, and so on. A clear understanding
of the magnetic behavior of such particles requires
a study of the effect of shape on the magnetization
state at the nanoscale.

The polyhedral shape can be analyzed analyti-
cally, using the combination of a formalism
developed by Komrska [3] and the Fourier-space
approach presented here. Explicit expressions for
the shape amplitude can be used to obtain an
analytical expression for the demagnetizing tensor,
field, and energy. Since nearly all micromagnetic
simulations are performed over a mesh which can
be triangular, square, hexagonal or, in general, an
irregular polygon or polyhedron (for 3D simula-
tions), it is important to be able to calculate
demagnetization tensors for particle shapes which
mimic the cell shapes of a micromagnetic simula-
tion. In this section, we will first describe briefly
the shape amplitude formalism. Then, a tetrahe-
dron will be analyzed in detail.

The shape amplitude DðkÞ of a polyhedral
particle with E edges and F faces is given by
Komrska [3]

DðkÞ ¼ �
1

k2

XF
f¼1

k 	 nf
k2 � ðk 	 nf Þ

2

XEf
e¼1

Lfek 	 nfe

� sinc
Lfe

2
k 	 tfe

� �
e�ik	nC

fe : ð24Þ

This equation is only valid if the second denomi-
nator is non-zero. If k ¼ 7knf (in other words, if
k is parallel to any one of the face normals), then
the contribution of that particular face (or faces)
must be replaced by

Df ðkÞ ¼ i
k 	 nf
k2

Pf e
�idf k	nf ; ð25Þ

where Pf is the surface area of the face f ; and df the
distance between the origin and the face f : In the
origin of Fourier space, the shape amplitude is equal
to the particle volume, i.e. Dð0Þ ¼ V : The symbols
in Eq. (24) are illustrated in Fig. 1 and are defined as

nCfe coordinate vectors of the center of the edge e
of face f ;

nf unit outward normal to face f ;
Lfe length of the eth edge of the f th face,
tfe unit vector along the eth edge of the f th face,

defined by

tfe ¼
nf �Nfe

7nf �Nfe7
;

ARTICLE IN PRESS

Fig. 1. Schematic representation of the face normals nf ; edge
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where Nfe is the unit outward normal on the face
which has the edge e in common with the face f ;

nfe unit outward normal in the face f on the edge
e defined by nfe ¼ tfe � nf :

The input parameters needed to complete this
computation for an arbitrary polyhedron are the
Nv vertex coordinates nv and a list of which
vertices make up each face (counterclockwise when
looking towards the polyhedron center). All other
quantities can be computed from these parameters.

The shape amplitude formalism, together with
Eq. (6) can be used to compute the Fourier
representation of the Nij tensor for an arbitrary
polyhedral object with a uniform magnetization.
We will illustrate the method using the tetrahedron
as an example.

3.2. The Tetrahedron

The shape amplitude of the tetrahedron can be
derived by inserting the vertex coordinates and
various unit vectors in Eq. (24). This has been
done by Komrska and Neumann [11] and the
resulting expression is

DðkÞ ¼ � 6V i½Eða; a; aÞ þ Eða;�a;�aÞ

þ Eð�a; a;�aÞ þ Eð�a;�a; aÞ�; ð26Þ

V is the volume, a ¼ L=
ffiffiffi
2

p
; with L the edge length

of the tetrahedron, and

Eða;b; gÞ 

e�

i
2
ðakxþbkyþgkzÞ

ðakx þ bkyÞðakx þ gkzÞðbky þ gkzÞ
:

ð27Þ

The lack of an inversion center causes the shape
amplitude to be a complex quantity. When
Eq. (26) is multiplied by kikj=k2; one obtains the
Fourier representation of Nij : This expression is
exact; i.e., no approximations have been made up
to this point.

Using Eq. (6), we can compute numerically the
Fourier representation of Nij on a discrete grid of
N3 points. Since Nij is a symmetric tensor field,
numerical computation involves six 3D inverse
FFT (iFFT) operations on a complex function.
The demagnetization tensor field has the same

phase factors as the shape amplitude, so that the
real space transform will be a real-valued function.
One of the main disadvantages of using the
discrete iFFT is the possibility of Gibbs oscilla-
tions in the real space Nij ; in particular since the
facets of the object represent discontinuities. A
direct evaluation of the inverse Fourier transform
integral would circumvent this numerical problem,
at the expense of significantly longer computation
times. Alternatively, the Fourier space expression
of Nij can be multiplied by a smoothing function
to eliminate the Gibbs phenomenon altogether.
Furthermore, the discrete iFFT imposes periodic
boundary conditions, so that the dimensions of the
object with respect to the overall sampling grid
must be chosen carefully. More details on the
numerical techniques associated with this compu-
tation will be presented in a forthcoming paper.

The real space Nij for the tetrahedron was
computed on an array of 1283 gridpoints, with the
edge length L taken to be 36 grid units. Computa-
tions were carried out using single precision,
complex number arithmetic on a 666MHz Com-
paq TRU64 workstation. Once the tensor field is
known, various 2D section can be used to
represent the details. However, for a complete
understanding of this tensor field, a 3D visualiza-
tion is desirable. A symmetric tensor field with
positive eigenvalues can be represented graphically
by an array of ellipsoids. For each ellipsoid, the
major axes are determined by the eigenvectors of
the tensor, and the dimensions along the axes are
given by the eigenvalues. Fig. 2 shows a perspec-
tive view of the demagnetization tensor field of the
tetrahedron (outlined with solid cylinders); the
numerical grid was sampled every eight grid points
for the visualization process. All ellipsoids are
inside the tetrahedron. The figure was generated
by means of a raytracing program [12]; a movie,
showing the entire tensor field from different
viewing directions, is available from the author’s
website [13].

Outside the tetrahedron, the trace of the
symmetric tensor vanishes, so that one or two
eigenvalues must be negative. The corresponding
quadratic surfaces are the single-sheet and double-
sheet hyperboloids, respectively. Since these sur-
faces have infinite extent, it is more convenient to
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represent only the eigenvectors and eigenvalues by
means of a 3D intersection of three rods. The
length of each rod corresponds to the modulus of
the eigenvalues, and the orientation represents the
corresponding eigenvector. Of the three rods,
the lighter colored one (Fig. 2) corresponds to
the negative eigenvalue; its corresponding eigen-
vector lies along the line connecting the grid point
to the center of the tetrahedron.

This representation contains all the information
needed to determine the B-field for an arbitrary
direction of #m: Using Eq. (5) and representing Nij

by its spectral decomposition, we have the follow-
ing relation for the magnetic induction compo-
nents:

Bi ¼ B0ðmi � CijLjk
*CklmlÞ; ð28Þ

where Cij is a matrix containing the eigenvectors of
Nij as columns, Ljk is a diagonal matrix containing
the eigenvalues, and the tilde symbol indicates the
transpose of a matrix. The first term in this

equation is only present inside the particle volume.
The interpretation of this relation is straightfor-
ward. Since the eigenvectors of a symmetric matrix
form an orthonormal set, the matrix C is a unitary
matrix, which means that it represents a rigid body
rotation. The demagnetization field component is
then determined by first rotating the unit magne-
tization vector into the reference frame of the
ellipsoid, then multiplying component-wise with
the eigenvalues, and finally rotating back to the
external reference frame. This is illustrated in
Fig. 3, which shows the various vectors for two
different ellipsoid shapes, prolate (top row) and
oblate (bottom row), and four different directions
of the unit magnetization vector #m: ½0 0 1�; ½1 0 2�;
½2 0 1�; and ½1 0 0�; using Bravais direction indices.

Near the center of the edges of the tetrahedron
in Fig. 2, the demagnetization tensor corresponds
to a prolate ellipsoid oriented parallel to the
opposite edge. At the vertices, the ellipsoid is
oblate, parallel to the opposite face. Near the
center, the ellipsoids approach the spherical shape.
It is clear from the figure that the point group
symmetry of Nij is identical to that of the
tetrahedron, namely the point group %43m: This
also follows directly from Eq. (6): the factor kikj=
k2 has spherical symmetry, so when it is combined
(i.e. multiplied) with the shape amplitude, the
resulting expression inherits the symmetry of the
shape amplitude, which is the point group of the
object. Alternatively, one can view this as an
application of the Neumann Principle (e.g.
[14,15]): the symmetry elements of any physical

property of a crystal must include the symmetry

elements of the point group of the crystal. This can
be applied to objects with a given symmetry, so
that the demagnetization tensor field of a uni-
formly magnetized particle has the same symmetry
as the particle shape.

Furthermore, if the particle has a symmetry axis
of order greater than the rank of the tensor, in this
case 2; then the tensor field is isotropic in a plane
normal to that symmetry axis. This was shown
explicitly by Moskowitz and Della Torre [8] for the
particular case of the demagnetization tensor, but
is valid in general for any symmetric second rank
tensor. As a consequence, all particle shapes for
which the point group contains multiple rotation
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Fig. 2. Rendered perspective representation of Nij for the

tetrahedron. Darker ellipsoids correspond to sampling points

inside the tetrahedron volume, which is outlined by thin

cylinders. Outside the tetrahedron, the tensor is represented

by three rods, oriented along the eigenvector directions, with

lengths proportional to the modulus of the corresponding

eigenvalue. The negative eigenvalue is represented by a light-

colored rod.
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axes of order greater than 2 must have an isotropic
Nij : This does not mean that the tensor field itself is
identical in all points. It means that all scalar
quantities derived by contracting the tensor with
respect to a vector are independent of the direction
of that vector. In particular, this means that the
magnetostatic energy Eq. (10) does not depend on
the orientation of the magnetization vector for all
of the Platonic and Archimedian particle shapes.
This includes the tetrahedron and the cube. For all
these particle shapes, the volume averaged, or
magnetometric, demagnetization tensor is equal to
that of the sphere, i.e., /NijS ¼ 1

3
dij :

4. Conclusions

In this paper, we have presented a new Fourier-
space approach which allows us to calculate
analytically the demagnetization tensor field for a
broad class of magnetic nanoparticles. In parti-
cular, all the faceted (polyhedral) particles can be
profitably described in Fourier space, thus obtain-
ing a convenient way to compute quantities of

interest in nanomagnetism, such as demagnetizing
energy and field. The approach allows us also to
investigate the class of rotational solids, and some
solids with a high degree of symmetry, and further
work is in progress to extend the computational
scheme. The analytical solution for the demagne-
tization tensor field of the finite cylinder will be
presented in a forthcoming publication.

In order to make progress in the research on
magnetic materials, this theoretical framework
must be tested against experiment and employed
to measure physical quantities. Transmission
electron microscopy experiments will be carried
out in the near future with nanoparticles of
well-defined geometry or magnetic structures of
interest. Electron holography and related phase
retrieval techniques may enable us to access the
information regarding magnetic fields around
the particles or structures. Such information would
be suitable for a thorough comparison with the
results of the calculations presented here.

From the micromagnetic point of view, the
opportunity to calculate exactly the demagnetizing
energy and field of uniformly magnetized cells of
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Fig. 3. Schematic representation of the relation between the unit magnetization vector #m; the demagnetizing vector H ¼ N : #m; and the

resulting induction vector B for two different ellipsoid shapes: prolate (top row) and oblate (bottom row), and four different

magnetization directions.
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any geometry (hexagonal plates, triangles or
generic polyhedra for 3D computations), will
represent a considerable improvement in the
accuracy and speed of the simulations. Work in
this direction is currently in progress.
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