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Abstract
A method is presented to compute the electron-optical phase shift for a

magnetized polyhedral nanoparticle, with either a uniform magnetization or a
closure domain (vortex state). The method relies on an analytical expression for
the shape amplitude, combined with a reciprocal-space description of the
magnetic vector potential. The model is used to construct two building blocks
from which more complex structures can be generated. Phase computations are
also presented for the five Platonic and 13 Archimedean solids. Fresnel and
Foucault imaging mode simulations are presented for a range of particle shapes
and microscope imaging conditions.

} 1. Introduction
The continuously decreasing length scale of magnetic recording media and other

applications based on magnetic nanoparticles necessitates the use of advanced char-
acterization methods, both for chemical and structural analysis and for the study of
magnetic domains and magnetic interactions. In recent years, transmission electron
microscopes have become equipped with increasingly more sensitive detectors
and cameras, and this in turn has improved dramatically the spatial resolution for
measurement of chemical compositions, often on the unit-cell length scale.
Determination of the fine scale magnetic structure in these materials is essential
for the prediction of various material properties. In addition, since virtually all
engineering parameters of these materials are directly affected by microstructural
features, the nature of these materials makes it necessary to combine closely the
study of magnetic structure and microstructure. Lorentz microscopy, and in parti-
cular the Fresnel and Foucault observation modes (De Graef 2001), has for several
decades been the dominant observation technique for qualitative magnetic domain
observations, and this paper deals with the application of Lorentz methods to the
study of nanocrystalline magnetic materials.

The study of magnetic domain configurations by means of electron scattering has
a long history. The early days of Lorentz microscopy have been summarized by
Grundy and Tebble (1968). The basic idea behind the Lorentz observation modes
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is that an electron travelling through a specimen with a non-zero magnetic induction
experiences a force, the Lorentz force, normal to both its velocity vector and the
local magnetic induction direction. This force causes a net deflection of the electron
trajectory away from the path that the electron would follow in the absence of a
magnetic induction. The magnitude of the Lorentz deflection angle is usually in the
range of a few tens of microradians, or about two orders of magnitude smaller than
typical Bragg angles for electron scattering. While the classical formulation provides
an intuitive understanding of the scattering of electrons by magnetic foils, for a
quantitative analysis one needs to resort to a quantum-mechanical description of
the scattering process in terms of the exit wavefunction of the electron.

The increasing importance of nanoscale magnetic particles obviates the need for
high-spatial-resolution quantitative observation methods which are capable of elu-
cidating not only the structure and chemistry of the nanoparticles, but also their
magnetization state. A quantum-mechanical description of the scattering process
requires knowledge of the magnetic phase shift imparted on the beam electron by
the particle and its surrounding fringing field. While such a phase shift is relatively
easy to compute for a particle with a high symmetry (e.g. a sphere or circular disc),
the situation is more complex for a faceted polyhedral nanoparticle. In the present
paper, we introduce a theoretical formalism for determining the magnetic compo-
nent of the electron-optical phase shift for a polyhedral nanoparticle. The method is
based on a reciprocal space description of the magnetic vector potential in terms of
the shape of the particle, described in detail in the companion paper, part I (Beleggia
and Zhu 2003). We apply the method to two classes of polyhedral particles: plate-
like particles with a regular polygonal or star shape, and the Platonic and
Archimedean solids.

} 2. General theory

2.1. Lorentz image formation theory
Lorentz image contrast simulations require knowledge of two functions: the

electron exit wavefunction  ðr?Þ and the transfer function T Lðq?Þ of the main
imaging lens. The exit wavefunction depends on the location r? in the exit plane
and consists of an amplitude and a phase:

 ðr?Þ ¼ aðr?Þ exp ½i’ðr?Þ	: ð1Þ

The amplitude varies from one location to the next owing to thickness and local
excitation error variations. The phase shift ’ consists of two contributions, namely
the electrostatic lattice potential Vðr?; zÞ and the magnetic vector potential Aðr?; zÞ,
and has been described by equation (8) in part I. The electrostatic phase shift
depends on the microscope accelerating voltage, whereas the magnetic phase shift
is independent of the electron energy.

The microscope transfer function appropriate for Lorentz observation modes is
given by

T Lðq?Þ ¼ Aðq? 
 q?0Þ expðz2q
2Þ expðz4q

4Þ; ð2Þ

with
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z2 ¼ 
ðp�c �f Þ2 þ ip�f�f þ Ca cos ½2ð�
 �aÞ	g; ð3 aÞ

z4 ¼ 
ðp��f Þ2

2
þ 2ðp�c�Þ2 �f Cs 
 i

p
2

Cs�
3: ð3 bÞ

In these equations we have the following variables: �c, beam divergence angle; �f ,
objective lens defocus; Ca, and �a, magnitude and angle respectively of twofold
astigmatism; �, polar angle in the back focal plane; Cs spherical aberration coeffi-
cient; q?, spatial frequency conjugate to the exit plane vector r?, where the magni-
tude of q? is represented by q. The function Aðq? 
 q?0Þ is the aperture function
and is unity inside the aperture and zero outside. The vector q?0 defines the centre of
the aperture, so that Foucault images can also be considered. For most Lorentz
observations, a small-angle approximation can be used, so that the spherical aberra-
tion phase shift (imaginary term in z4) does not contribute significantly to the overall
phase shift. From the aberrated wavefunction in the back focal plane, the image
intensity can be derived by an inverse Fourier transform

Iðr?Þ ¼ jF
1½ ðq?Þ	j2 ¼ j ðr?Þ � T Lðr?Þj2; ð4Þ
where � indicates the convolution product and the function T Lðr?Þ, the inverse
Fourier transform of T Lðq?Þ, is the point spread function for Lorentz microscopy.

While the computation of the electrostatic phase shift ’eðr?Þ is relatively easy if
the mean inner potential and the particle shape are known, the magnetic phase shift
presents a more difficult challenge. In part I it was shown that, if the magnetization
state mðrÞ of the particle is known, then the vector potential can be calculated
analytically in Fourier space (equation (5) in part I). The magnetic phase shift is
then given by equation (10) in part I, which we repeat here for convenience:

’mðkx; kyÞ ¼
ipB0

�0

Dðkx; ky; 0Þ
k2

x þ k2
y

ðm̂m� kÞjz: ð5Þ

The function DðkÞ is the particle shape amplitude, which we shall analyse in more
detail in the following section.

2.2. Particle shape amplitudes
In the remainder of this paper, we shall consider the case of a polyhedral particle.

There are two major reasons for studying polyhedral particles. Firstly, the current
interest in the properties of nanoparticles includes not only particles which have
solidified or were otherwise formed into a polyhedral shape, but also intentionally
shaped particles, such as patterned arrays of discs, plates and so on. A clear under-
standing of the magnetic behaviour of such particles requires a study of the effect of
shape on the magnetization state on the nanoscale and, perhaps more importantly,
an analysis of the type of information that can be extracted from electron-optical
observations on such particles. An experimental example of magnetic structure ima-
ging in circular, square, triangular and pentagonal cobalt and Ni80Fe20 films has
been given by Kirk et al. (1968). Secondly, the polyhedral shape can be analysed
analytically, using a formalism developed by Komrska (1987). Explicit expressions
for the shape amplitude can be used to obtain an analytical expression for the
electron-optical phase shift. This in turn allows a detailed study of the types of
image that can be obtained from either Lorentz microscopy or electron holography.
In this section, we shall first describe briefly the shape amplitude formalism. Then we
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introduce the types of polyhedral particle for which the phase computations will be
carried out.

The shape amplitude DðkÞ of a polyhedral particle with E edges and F faces is
given by (Komrska 1987) (using k ¼ 2pq):

DðkÞ ¼ 
 1

k2

XF

f¼1

kEnf

k2 
 ðkEnf Þ2

XEf

e¼1

LfekEnfe sinc

�
Lfe

2
kEtfe

�
expð
ikEnC

feÞ: ð6Þ

This equation is only valid if the second denominator is non-zero. If k ¼ �knf (in
other words, if k is parallel to any one of the face normals), then the contribution of
that particular face (or faces) must be replaced by

Df ðkÞ ¼ i
kEnf

k2
Pf expð
idfkEnf Þ; ð7Þ

where Pf is the surface area of face f , and df is the distance between the origin and
face f . In the origin of Fourier space, the shape amplitude is equal to the particle
volume, that is Dð0Þ ¼ V . The symbols in equation (6) are defined as follows (figure
1): nC

fe are the coordinate vectors of the centre of edge e of face f ; nf is the unit
outward normal to face f ; Lfe is the length of the eth edge of the f th face; tfe is the
unit vector along the eth edge of the f th face, defined by

tfe ¼
nf �Nfe

jnf �Nfej
;

where Nfe is the unit outward normal on the face which has edge e in common with
face f ; nfe is the unit outward normal in face f on edge e defined by nfe ¼ tfe � nf .
The input parameters needed to complete this computation for an arbitrary poly-
hedron are the Nv vertex coordinates nv and a list of which vertices make up each
face (counterclockwise when looking towards the polyhedron centre). All other
quantities can be computed from these parameters.

The shape amplitude formalism can be used to compute the electron-optical
phase shift for an arbitrary polyhedral object with a uniform magnetization. It is
easy to show that the formalism cannot be applied to particles with a spatially
varying magnetization pattern. The derivation of equation (6) relies on the so-called
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Figure 1. Schematic representation of the face normals nf , edge vectors tfe and outward edge
normals nfe used in equation (6).



Abbe transform (Komrska 1987), an integral transform which converts the volume
integral of a function C to a surface integral of the outward gradient of C. This
transform is valid for all functions C which satisfy the homogeneous Helmholtz
equation

�Cþ k2C ¼ 0: ð8Þ
Equation (6) was derived for CðrÞ ¼ exp ð
ikErÞ, since this is the integrand of the
shape amplitude DðkÞ:

DðkÞ ¼
ð

DðrÞ exp ð
ikErÞ dr ¼
ð

V

expð
ikErÞ dr: ð9Þ

For a particle with non-uniform magnetization mðrÞ, the function CðrÞ would be
equal to mðrÞ expð
ikErÞ. Substitution in the Helmholtz equation results in the
component equations

�mi 
 2ikEJmi ¼ 0; ð10Þ
which can only be satisfied for all k if Jmi ¼ 0, or m is constant over the volume of
the particle. This would appear to restrict the use of equation (6) to uniformly
magnetized particles only. However, if a polyhedral particle has multiple magnetic
domains, and the magnetization in each domain is uniform, then we can still apply
the same formalism by considering each domain as a separate particle and employing
the linearity of the shape function.

As shown schematically in figures 2 (a) and (b), every regular polygonal plate can
be viewed as a superposition of isosceles triangular plates, rotated around the central
point. If the shape function of the isosceles triangle is represented by DðrÞ, then the
pentagonal plate can be described by a sum of five such shape functions, each rotated
by 728 around the vertical direction. More generally, any rotation and translation of
the building blocks can be taken into account easily by multiplying the shape ampli-
tude by suitable phase terms. Complex particle shapes can hence be constructed from
just a few simple building blocks. In each building block, the magnetization can have
a different direction. Putting the building blocks together results in domain walls of
zero width at the contact planes of the blocks. The introduction of realistic domain
walls would only result in a smoothing of the sharp features of the resulting electron-
optical phase function, and will not be considered here (for an example of such
smoothing, see } 3.1 in part I).
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Figure 2. Regular polygonal plates ((a) square; (b) pentagon) can be constructed by rotating
an isosceles triangular plate (outlined) around the central axis. A sheared rectangular
plate can be used to create many different shapes, such as (c) the hexagonal star and (d)
a domain structure of intersecting magnetic domain walls often encountered in hard
magnetic materials.



In } 3.1 we shall compute the shape amplitude of the isosceles triangular plate.
This expression is then generalized to regular polygonal plates in } 3.3. Similarly,
star-shaped plates and many planar magnetic domain configurations can be consid-
ered to be built from a basic building block, the sheared rectangular plate. In } 3.2 we
shall discuss the shape amplitude for a single sheared rectangular plate, and in } 3.3
for a combination of such plates. In } 3.4 we describe the phase computations for the
five Platonic and 13 Archimedean polyhedra. Finally, } 3.5 describes a straightfor-
ward method to compute the electron-optical phase shift for an arbitrary combina-
tion of both building blocks.

} 3. Applications

3.1. Isosceles triangular plate
Consider an isosceles triangular plate with bottom edge length 2a and thickness

2c. The top angle is equal to 2�. The coordinate origin is taken at the centre of the
top edge (between vertices 1 and 4), with the coordinate axes as shown in figure 3.
The volume of this plate is V ¼ 2a2c= tan�. The explicit expression for the shape
amplitude, derived from equation (6), is given by

DðkÞ ¼ 4ic
sinc ðckzÞ
k2

x þ k2
y

X3

j¼1


j sinc ð�jÞ exp ði�jÞ; ð11Þ

where sinc x � ðsin xÞ=x,
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Figure 3. (a) Schematic representation of an isosceles triangular plate of thickness 2c, bottom
edge length 2a and top angle 2�; (b) the shape ‘intensity’ jDðkx; ky; 0Þj2 for 2� ¼ 1208,
728, 608 and 458. The isosceles triangular building block is shown in the upper right-
hand corner, together with the order of the resulting polygon, that is 5 indicates
pentagon, 8 indicates octagon, etc. The intensity scale is logarithmic, to enhance
small intensity variations.




j ¼
a

2
½
!kx þ ky; !kx þ ky;
2ky	; ð12 aÞ

�j ¼
a

2
½kx þ !ky;
kx þ !ky; 2kx	; ð12 bÞ

�j ¼ ½�1; �2; hky	 ð12 cÞ

and ! ¼ 1= tan�. Along the line ð0; 0; kzÞ this expression should be replaced by

Dð0; 0; kzÞ ¼ V sinc ðckzÞ: ð13Þ

The ‘shape intensities’, defined by jDðkx; ky; 0Þj2, for isosceles triangular plates with
opening angle � ¼ 1208; 728; 608 and 458 are shown in figure 3 (b). As expected, the
main intensity ‘streaks’ are normal to each of the polyhedron faces.

3.2. Sheared rectangular plate
The shape amplitude of a sheared rectangular plate with edge lengths 2a, 2b and

2c and a shear angle � can be derived from that of a regular rectangular plate of the
same dimensions by means of a simple coordinate change. For a rectangular plate we
have

DðkÞ ¼ V sinc ðakxÞ sinc ðbkyÞ sinc ðckzÞ; ð14Þ

with V ¼ 8abc; for the sheared plate we obtain

DðkÞ ¼ V sin� sinc ðakxÞ sinc fb½cos ð�kxÞ þ sin ð�kyÞ	g sinc ðckzÞ: ð15Þ

For the origin choice shown in figure 4 (a), the shape amplitude must be multiplied
by a phase factor:

DðkÞ ! DðkÞ exp f
i½ða þ b cos�Þkx þ b sin ð�kyÞ	g: ð16Þ

The shape intensities for two different shearing angles � are shown in figure 4 (b).

3.3. Regular polygonal plates
Any regular polygonal plate can be constructed by rotating an isosceles trian-

gular plate of the proper dimensions around the ez axis. If we denote the number of
triangles needed by Nt, then the top angle 2� must be equal to 2p=Nt. The resulting
shape function is given by
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Figure 4. (a) Schematic representation of a sheared rectangular plate of dimensions 2a, 2b
and 2c, and shear angle �; (b) the shape ‘intensity’ jDðkx; ky; 0Þj2 for dimensions
ð2a; 2a; 2cÞ with � ¼ 608 and for dimensions ð4a; 2a; 2cÞ, with � ¼ 458 (logarithmic
intensity scale).



DðkÞ ¼ 4ic
sinc ðckzÞ
k2

x þ k2
y

XNt

p¼1

X3

j¼1


pj sinc ð�pjÞ exp ði�pjÞ ð17Þ

¼
XNt

p¼1

DpðkÞ;

with


pj ¼ ½cp
1 þ sp�1; cp
2 
 sp�2;
aðspkx þ cpkyÞ	; ð18 aÞ

�pj ¼ ½cp�1 
 sp
1; cp�2 þ sp
2; aðcpkx 
 spkyÞ	; ð18 bÞ

�pj ¼ ½�p1; �p2; hðspkx þ cpkyÞ	 ð18 cÞ

and cp ¼ cos ð�0 þ �pÞ, sp ¼ sin ð�0 þ �pÞ; �0 is an overall rotation angle fixing the
orientation of the bottom edge of the first triangular plate with respect to the ex axis,
and �p ¼ 2p�. Positive rotation angles represent counterclockwise rotations.

Figure 5 shows the shape ‘intensities’ jDðkx; ky; 0Þj2 for Nt ¼ 3; 4; 5; 6; 7 and 8.
For odd Nt, the shape amplitude is complex and the lack of inversion centre com-
bined with Friedel’s law results in an apparent symmetry axis of order 2Nt. For
Nt ¼ 4 we find the familiar result Dðkx; ky; 0Þ ¼ 8a2c sinc ðakxÞ sinc ðakyÞ. Star-
shaped polygonal plates can be constructed in a similar way, starting from equation
(15) for the sheared rectangular plate.

3.4. Platonic and Archimedean solids
The electron-optical phase shift for an arbitrary polyhedral solid can be com-

puted by direct application of equation (10) in part I. The five Platonic and 13
Archimedean shapes are listed in table 1. For each polyhedron, the number of
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Figure 5. Shape ‘intensities’ for the regular polygonal plates of order Nt ¼ 3, 4, 5, 6, 7 and 8.
All functions were computed using equation (17).



vertices, edges and faces is shown, as well as the volume factor Vs. To compute the
actual volume, Vs must be multiplied by L3, where L is the edge length. Vs was
computed numerically for each polygon by taking the limit of DðkÞ for k ! 0 with
Lfe ¼ 1. The sixth column of table 1 shows the edge length L in nanometres for a
particle volume V ¼ 106 nm3. In } 4, the magnetic and electrostatic phase shift will be
computed for all Platonic and Archimedian polyhedral shapes. They will be com-
pared with the magnetic phase shift for a uniformly magnetized spherical particle of
the same volume. It can be shown (De Graef et al. 1999) that the phase shift for a
spherical particle of radius R and saturation induction B0 along the ex direction is
described in real space byy

’mðr?Þ ¼
2

3

p
�0

B?
y

r2
fR3 
 ½R2 
 ðr2 < R2Þ	3=2g; ð19Þ

with r2 ¼ x2 þ y2 and the symbol ða < bÞ indicates that the smaller of a and b should
be used. The Fourier transform of this expression is given by equation (19) in part I:

’mðkx; kyÞ ¼
4p2i

�0

B?R2 ky

k3
?

j1ðk?RÞ; ð20Þ

with k2
? ¼ k2

x þ k2
y and j1ðxÞ ¼ ðsinc x 
 cos xÞ=x the spherical Bessel function of first

order.
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Table 1. Numbers Nv of vertices, numbers Ne of edges and numbers Nf of faces for the five
Platonic and 13 Archimedean solids, together with the volume factors Vs. The total
volume is given by V ¼ VsL

3, with L the edge length. The edge length L for a volume
of 106 nm3 is shown in the sixth column.

Polyhedron Nv Ne Nf Vs

L
(nm) Figure

Tetrahedron 4 6 4 0.118 204.0 6 (a)
Cube 8 12 6 1.000 100.0 6 (b)
Octahedron 6 12 8 0.471 128.5 6 (c)
Dodecahedron 20 30 12 7.663 50.72 6 (d)
Icosahedron 12 30 12 2.182 77.10 6 (e)

Truncated octahedron 24 36 14 11.31 44.54 6 ( f )
Cuboctahedron 12 24 14 2.357 75.14 6 (g)
Rhombitruncated cuboctahedron 48 72 26 41.80 28.81 6 (h)
Snub cube 24 60 38 7.890 50.23 6 (i)
Rhombicuboctahedron 24 48 26 8.714 48.59 6 ( j)
Truncated cube 24 36 14 13.60 41.89 6 (k)
Truncated icosahedron 60 90 32 55.29 26.25 6 (l)
Icosidodecahedron 30 60 32 13.84 41.65 6 (m)
Rhombitruncated icosidodecahedron 120 180 62 206.8 16.91 6 (n)
Snub dodecahedron 60 150 92 37.62 29.84 6 (o)
Rhombicosidodecahedron 60 120 62 41.61 28.86 6 (p)
Truncated dodecahedron 60 90 32 85.04 22.74 6 (q)
Truncated tetrahedron 12 18 8 2.711 71.72 6 (r)

{A factor of 2
3

was inadvertently omitted from equation (2) in the paper by De Graef et al.
(1999).



3.5. Electron-optical phase shift computation
The phase shift due to the magnetic vector potential of a regular polygonal plate

can be computed analytically by application of equation (10) in part I. If the beam
direction is represented by means of the two spherical angles � and �, then it is easy
to show that the Fourier transform of the phase shift in a plane normal to the beam
direction is given by

’mðk 0
x; k

0
yÞ ¼

ipB0

�0

XNt

p¼1

Dpðk 0
x; k

0
y;KÞ

k 0
x

2 þ k 0
y

2 þ K2
Sðk 0; �0; �p; �; �Þ; ð21Þ

where Dp was defined in equation (17),

K ¼ 
ðk 0
x cos�þ k 0

y sin�Þ tan �; ð22Þ

and the components ðk 0
x; k

0
yÞ are given by

k 0
x ¼ kx cos� cos �
 ky sin�; ð23 aÞ

k 0
y ¼ kx sin� cos �þ ky cos�: ð23 bÞ

The two-dimensional inverse Fourier transform of equation (21) results in the elec-
tron-optical phase shift ’mðx 0; y 0Þ, where ðx 0; y 0Þ are coordinates in the plane normal
to the electron beam. The y 0 coordinate is measured along the projection of ez into
the image plane. The components kx and ky are the frequency components with
respect to the object reference frame. They are symmetrically sampled around the
reciprocal space origin.

The function S in equation (21) depends on the magnetization state of the poly-
gonal plate. For a uniformly magnetized plate, with magnetization direction
m̂m ¼ m?ðcos �m ex þ sin �m eyÞ þ mzez; we have

S ¼ ðmz sin� sin �
 m? sin �m cos �Þk 0
x

þ ðm? cos � cos �m 
 mz cos� sin �Þk 0
y

þ m? sin � sinð�m 
 �ÞK : ð24Þ

For the vortex state, with the magnetization parallel to the bottom edge of each
isosceles triangular plate, we have

S ¼ cos � ½k 0
y sinð�m þ �pÞ þ k 0

x cosð�m þ �pÞ	


 K sin � sinð�m þ �p þ �Þ: ð25Þ

These equations are valid provided that � 6¼ p=2. The Fourier transform of the phase
is undefined in the origin, and it is convenient to select ’mðk ¼ 0Þ ¼ 0, resulting in a
real-space phase function with zero average.

Finally, for computations in which multiple particles are present in the same field
of view, it is convenient to apply the coordinate translation by means of a phase
factor in reciprocal space. A polygonal plate with centre at Rs can be obtained by
multiplication of the shape amplitude with a phase factor

DpðkÞ ! DpðkÞ exp ð
iRsEkÞ: ð26Þ

The electrostatic phase shift ’eðr?Þ can be computed directly from the shape
amplitude by performing an integration along the electron trajectory. If the electro-
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static potential is constant over the volume of the particle, then the electrostatic
phase shift can be expressed as

’eðr?Þ ¼ �V0

ðþ1


1
Dðr?; ‘Þ d‘ ¼ �V0tp; ð27Þ

with tp the projected thickness. This integral can be computed for an arbitrary
incident beam orientation using the same formalism as used to derive equation
(21). The resulting phase is then proportional to the projected thickness of the
particle. If we assume that the particle does not diffract electrons, that is, only the
mean inner potential is of importance, then the projected thickness can also be used
to compute the amplitude of the electron exit wave using a straightforward expo-
nential absorption law. The total exit wave is then described by

 ðr?Þ ¼ exp ½
�tpðr?Þ	 expfi½’mðr?Þ þ ’eðr?Þ	g; ð28Þ

where the absorption factor � can be taken as the inverse of the normal absorption
length � 00 (De Graef 2003). If the nanoparticle is supported by an amorphous film,
typically a carbon film, then this would add an additional phase factor to the exit
wavefunction (Fan and Cowley 1987).

} 4. Examples of phase computations

4.1. Phase maps for selected particle shapes
Figure 6 shows the magnetic and electrostatic phase shifts for all Platonic and

Archimedean shapes. For each polyhedron, a pair of grey-scale images is shown. The
image on the left corresponds to the difference between the magnetic phase shift for
the uniformly magnetized polyhedron and the magnetic phase shift for the uniformly
magnetized sphere with the same volume (radius, 62:03 nm). The volume was taken
to be 106 nm3 for all particles, so that the edge length corresponds to the values
shown in table 1. All magnetic phase shift differences are shown on a common
intensity scale with minimum 
0:630 rad (black) and maximum 0:630 rad (white).
The extremal phase shifts for the uniformly magnetized sphere are �3:941 rad. This
implies that the face shift for a polyhedral particle may locally be up to about 15%
different from that for a sphere of the same volume. In the fringing field area, the
phase shifts for all particles are identical with that for the sphere. This is because at a
large distance the fringing field for all particles approaches that of a magnetic dipole.
The phase difference images in figure 6 indicate that, in order to determine the
magnetic component of the phase shift, both a high spatial resolution and a high
phase resolution are required. Furthermore, the electrostatic phase shift, discussed
next, will be added to the magnetic phase shift, complicating the determination of the
magnetization state of the particle.

The electrostatic phase shift is proportional to the projected thickness, which is
shown as a grey-scale plot on the right-hand side of each pair of images in figure 6.
Superimposed on the projected thickness is a projection of the polyhedron in the
orientation used for the computation. The fine structure of both magnetic and
electrostatic phases depends sensitively on the precise orientation of the polyhedron.
Figure 7 shows the phase shift along a line normal to the magnetization direction
and through the centre of the polyhedron for the five Platonic shapes and the equal
volume sphere. The vertical line indicates the radius of the sphere. As expected, the
cube shows a discontinuous phase behaviour because it is oriented such that the
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incident beam is parallel to the side faces. The phase shift for the icosahedron is
nearly identical with that of the equal volume sphere. This is again to be expected,
since the icosahedral shape is nearly spherical. The differences between the various
phase curves show that faceting of nanoparticles can have a subtle effect on the
magnitude of the magnetic phase shift. A high phase resolution will be required to
measure these phase differences.

As an illustration of the magnetic and electrostatic phase computations for the
disc-shaped particles based on the isosceles-triangular and the sheared-rectangular
building block, we shall consider an array of eight particles, as shown in figure 8 (a).
Four of the particles are constructed using the isosceles triangle, and the other four
using the sheared rectangle. The magnetization states are indicated by means of
vectors representing the direction of M0. The four particles on the left have a thick-
ness of 20 nm, and the others are 10 nm thick. The saturation induction is B0 ¼ 1 T
for all particles. The computational array measures 512 � 512 pixels, and the scale
factor is 2 nm per pixel, resulting in an viewing area of about 1 mm2.
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Figure 6. Magnetic and electrostatic phase shifts for the 5 Platonic and 13 Archimedean
shapes. All particles have identical volumes (106 nm3). The magnetic phase shifts are
divided by the phase shift for an equal volume sphere with the same magnetization.
The contrast variations represent the ratio range ½
0:630; 0:630	. The projected edge
drawing of each polyhedron is superimposed on the electrostatic phase shift. (a)–(r)
refer to the entries in the last column of table 1.



Figure 8 (b) shows the magnetic phase shift ’m, together with cosð5’mÞ (figure
8 (c)). The triangular and pentagonal discs have vortex magnetization states with
opposite polarities, and the resulting phase profiles are pyramidal shapes with posi-
tive or negative slopes. There is no fringing field around these particles. All uni-
formly magnetized particles (first and third rows) are surrounded by a dipole field;
the formalism correctly includes the interactions between these particles through the
linearity of the vector potential and resulting phase shift. The two particles in the
right-most column have a vortex magnetization state, but there is a weak fringing
field around the sharp points of the star shape. The magnetic phase shift ranges from

8.097 to 5.194 rad.

The electrostatic phase shift is shown in figure 8 (d); the phase shift vanishes in
between the particles and is proportional to the projected thickness tp wherever a
particle is present. The electrostatic phase shift ranges from 0 to 11:01 rad. The total
phase shift ’m þ ’e and the cosine of five times the total phase shift are shown in
figure 8 (e) and ( f ) respectively. The total phase shift ranges from 
3:725 to
15:91 rad. The particle arrangement shown in figure 8 (a) will be used in the following
sections to illustrate Fresnel and Foucault image formation.

4.2. Fresnel and Foucault image computations
Figure 9 shows a combination of simulated Fresnel and Foucault images for the

particle arrangement in figure 8 (a). The centre image is the in-focus image for
the following imaging parameters: accelerating voltage, 200 kV; beam divergence
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Figure 7. Magnetic phase shift along a line normal to the magnetization direction and
through the centre of the polyhedron for the 5 Platonic shapes and the equal volume
sphere. All particles have a volume of 106 nm3 and identical saturation magnetic
induction of 1 T.



angle �c ¼ 10
6 rad; aperture radius, 2 nm
1; spherical aberration Cs ¼ 1 m; defocus
spread, 10 mm. The normal absorption length is taken to be � 00 ¼ 50 nm. The satura-
tion induction of the particles is taken to be B0 ¼ 1 T, and the mean inner potential is
V0 ¼ 20 V. The particles are ‘supported’ by an amorphous film 20 nm thick with a
mean inner potential of 10 V.

The top left and right images show simulated under-focus and over-focus images
at a defocus value �f ¼ �0:5 mm. The electrostatic component of the over-focus
image is shown in the lower left image. This image was computed by putting
B0 ¼ 0 T and leaving all other parameters unchanged. The magnetic component of
the same image is shown on the lower right, with V0 ¼ 0 V. It is clear that the
magnetic component of the image is rather subtle and gives rise to either an asym-
metry in the Fresnel fringes, or an off-centre shift of the contrast inside the particle.
This is particularly clear for particles 3 and 7, using the numbering scheme of figure
8 (a). The bright dot in the centre of particle 6 is caused by the magnetic phase shift
and is typical for particles with a vortex magnetization state. The magnetic contribu-
tion to the Fresnel images decreases with decreasing particle size. It is hence difficult
to prove unambiguously that a magnetic component of the image contrast is present.
Furthermore, since the magnetic phase shift causes an asymmetry of the Fresnel
fringes surrounding the particle, the standard method of correcting image astigma-
tism by ensuring that the Fresnel fringe is symmetric all around the particle must not
be used if a magnetic phase shift contribution is expected. With the exception of the
central bright or dark dot in flat particles with a vortex state, there is, in general, no
contrast inversion as a function of defocus. This is quite different from the image
characteristics of magnetic domain walls in foils of constant thickness, where the
contrast reversal is used to identify the location of the domain wall.
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Figure 8. (a) Configuration of 8 disc-shaped particles, based on the isosceles-triangular and
the sheared-rectangular building blocks, where magnetization states are indicated by
the direction of the vector, and the building block of each particle is outlined; (b)
magnetic phase shift ’m; (c) cos ð5’mÞ; (d) ’e for an accelerating voltage of 200 kV; (e)
’e þ ’m; ( f ) cos ½5ð’e þ ’mÞ	.



The remaining four images in figure 9 are Foucault images, obtained by shifting
the centre of the diffraction aperture by a vector q0. The magnitude of the aperture
shift is equal to 0:95 times the aperture radius, and the direction of the shift is
indicated by the arrows in the lower left corner of each image. Dark and bright
contrast lobes can be observed around the particles with uniform magnetization
states, while magnetic domains are clearly present in the particles with vortex states.
The Foucault contrast sensitively depends on the precise position of the aperture
edge with respect to the optical axis. Figure 10 shows a sequence of Foucault images
for particle 2 (triangular with vortex state), for horizontal and vertical aperture
shifts. The magnitude of the shift is indicated as a fraction of the aperture radius.
The central image has the aperture edge precisely on the optical axis. The image
contrast varies significantly when the aperture is moved only a small distance. While
it is straightforward to compute Foucault-type images, it is not easy to position the
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Figure 9. Montage of Fresnel and Foucault images for the particle configuration of figure
8 (a). The in-focus image is shown in the centre, under-focus and over-focus images are
shown at the top left and top right respectively. The bottom left and bottom right
images represent the electrostatic and magnetic components respectively, of the over-
focus image (top right). Foucault images are indicated by the arrows in the lower left
corner of each image. The imaging parameters are as follows: 200 kV; �c ¼ 10
6 rad;
aperture radius, 2 nm
1; aperture shift, 1:9 nm
1.



aperture reproducibly in an experiment. It is crucial, however, that the aperture be
perfectly centred for the observation of magnetic nanoparticles in the Fresnel ima-
ging mode, since small aperture shifts can cause contrast features that are similar to
those caused by residual astigmatism.

Figure 11 shows Fresnel image contrast for four different polyhedra: 1, octahe-
dron; 2, icosahedron; 3, truncated cube; 4, snub dodecahedron. The top row shows a
through-focus series for the following imaging parameters: 200 kV; �c ¼ 10
5 rad;
aperture radius, 2 nm
1. The defocus is measured in millimetres, and the field of view
is 500 nm � 500 nm. The top row of figure 11 shows the Fresnel images for V0 ¼ 20 V
and B0 ¼ 1 T; the magnetization vector points from left to right. The bottom row has
identical imaging conditions, except that there is no magnetic contribution
(B0 ¼ 0 T). The only signature of the magnetic phase shift is a slight vertical asym-
metry of the Fresnel fringes. For the icosahedron and snub dodecahedron, which
more closely approximate a sphere, the circular Fresnel fringes are shifted off-centre
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Figure 10. Foucault images for horizontal (top row) and vertical (bottom row) aperture
shifts. The aperture shifts are indicated in units of the aperture radius. The object is
a triangular plate of thickness 20 nm, and the viewing area measures 500 nm � 500 nm.
The triangle has a vortex magnetization state.

Figure 11. Fresnel through-focus series for four polyhedral shapes (1, octahedron; 2, icosa-
hedron; 3, truncated cube; 4, snub dodecahedron). The microscope imaging para-
meters are as follows: 200 kV; �c ¼ 10
5 rad; aperture radius, 2 nm
1; V0 ¼ 20 V;
B0 ¼ 1 T. For the bottom row, the phase shift is entirely electrostatic, that is
B0 ¼ 0. The viewing area has dimensions of 500 nm � 500 nm.



by the magnetic phase shift, consistent with the phase shift model for a uniformly
magnetized sphere (De Graef et al. 1999). Note that a fairly large defocus value is
needed to bring out the contrast asymmetries. This leads to a significant magnifica-
tion of the particle; the apparent particle size in the defocused images is about three
to four times larger than the actual particle size.

4.3. Magnetic induction maps
With the recent advances in phase reconstructions from experimental data, either

through the use of electron holography (Völkl and Lehmann 1999) or via the trans-
port-of-intensity equation (Paganin Nugent 1998), it has become ‘fashionable’ to
display so-called magnetic induction maps. These maps are typically derived from
the phase by means of the following equation (Chapman 1989):

J’ ¼ 
 p
�0

ðB� nÞt; ð29Þ

where B is the magnetic induction, n a unit vector parallel to the incident electron
beam and t the foil thickness. The magnetic induction components derived from this
equation are (for a right-handed Cartesian reference frame with n ¼ 
ez)

ðBx;ByÞ ¼
�0

pt

�

 o’

oy
;
o’

ox

�
: ð30Þ

It is important to point out the conditions under which this equation may be used.
The reconstructed phase ’ is usually the total phase, which consists of both an
electrostatic contribution ’e and a magnetic contribution ’m. The gradient
operation would give meaningless results on the electrostatic component of the
phase, which in turn means that ’e must be constant. This is only possible if the
foil thickness t is constant over the region of interest. Furthermore, since the elec-
tron-optical phase shift represents the integral of the vector potential along the
electron trajectory, the phase only has a simple relation to the magnetic induction
components inside the particle if there is no fringing field. This means that equation
(29) may only be used if there are no fringing fields above or below the particle or
foil.

Consider the following numerical example: a magnetic ring is constructed by
taking 40 isosceles triangles with top angle p=20, height h and magnetization m,
and subtracting from the resulting plate a slightly smaller plate, constructed from
triangular plates of height h 
 2c and magnetization 
m. This ring has a square
cross-section. Next, we compute the gradient of the phase for two different magne-
tization configurations: vortex state and uniformly magnetized. Figure 12 (a) shows
the resulting phase, figure 12 (b) shows the cosine of the phase, and figures 12 (c) and
(d) show the magnetic induction components Bx and By respectively. White repre-
sents an induction component along the positive ex and ey directions. The computed
magnetic induction map for the vortex state agrees well with the input state.
Equation (29) is applicable in this case since there is no fringing field. For the
uniformly magnetized state, with m̂m ¼ ex, the phase (figure 12 (e)) is not constant
outside the ring. This is due to the fringing field which is taken into account in all
simulations in this paper. The gradient operation on this phase function results in the
magnetic induction maps in figures 12 (g) and (h). For Bx the agreement with the
input phase is good only near the top and bottom of the ring, whereas the By

component should vanish completely. As a rule of thumb we can state that equation
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(29) should only be applied to a reconstructed phase if there is no phase variation
outside the particle.

} 5. Conclusions
In this paper and its companion paper (part I) we have shown that it is possible

to compute the magnetic and electrostatic phase shift components for a wide range
of particle shapes. The main feature of this model relies on a Fourier space
description of the magnetic vector potential A. While part I dealt with rectangular,
cylindrical and spherical shapes with various magnetization states, part II provides
an analysis of the computation of the magnetic and electrostatic phase shifts for
polyhedral particles.

Through the use of isosceles triangular plates and sheared rectangular plates, for
which analytical expressions for the shape amplitude DðKÞ are provided, more com-
plex three-dimensional shapes can be built with either a uniform or a vortex magne-
tization state. Once the phase shift is known in analytical or numerical form, the
standard image formation framework for high-resolution electron microscopy can be
used to compute images for the Fresnel and Foucault imaging modes. Examples of
simulations showing characteristic magnetic image features are shown for several
particle shapes. The phase computation algorithm introduced in parts I and II opens
the way to quantitative phase reconstruction and interpretation for magnetic nano-
particles of arbitrary shape. Experimental research on polyhedral magnetic ferrite
nanoparticles is currently under way.
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Figure 12. Phase simulation and magnetic induction components (following equation (29))
for a double ring consisting of 40 isosceles triangles, where the centre ring has the
opposite magnetization pattern, resulting in zero magnetization inside the ring: (a)–(d)
the counterclockwise vortex state; (e)–(h) the uniformly magnetized state.
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