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Picometer Accuracy in Measuring Lattice Displacements Across Planar Faults
by Interferometry in Coherent Electron Diffraction
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We calculate the shadow image in far field below a thin crystal when a coherent electron source is
placed at micrometer distances above the specimen, and note that the presence of a planar fault results
in very strong oscillatory contrast. We realize these predictions experimentally using a field-emission
electron source in a microscope. With this technique, we determine displacement vectors at planar faults
with an accuracy down to 1 pm in studies of the Bi2Sr2CaCu2O8 superconductor containing thin inter-
calated layers.

PACS numbers: 61.72.Nn, 61.16.Bg, 74.72.Hs
In his earliest papers on holography, Gabor [1] suggested
placing a coherent electron probe in front of a thin speci-
men and observing the intensity variations in the shadow
image. This technique is referred to as in-line hologra-
phy. However, rather than in-line holography, off-line or
off-axis holography, based on splitting a coherent beam,
became the more successful technique both in visual light
holography using a laser [2], and in electron holography
using a coherent electron source [3]. With the advent of
small coherent electron sources based on field-emission
guns, in-line electron holography has become feasible [4].
In-line electron holography and the closely related coher-
ent electron diffraction [5] have mostly been used to study
the fringes that appear when convergent beam diffraction
disks from a perfect crystal overlap. Such experiments pro-
vide information about the spatial coherence of the electron
source and, in principle, also about the phase of structure
factors [6–8].

We present the first study where an experimental setup
similar to that originally proposed by Gabor to record an
electron hologram results in more accurate measurements
than available electron microscopic techniques. We form
a small coherent electron probe close to the specimen, and
show that accurate measurements of lattice displacements
can be obtained in this way. We realize this experimen-
tally with a 300 kV state-of-the-art transmission electron
microscope equipped with a field-emission gun, using the
prespecimen lenses of the microscope to form a small elec-
tron probe at a crossover adjustable to the desired height
above the specimen. We study the high-temperature su-
perconductors Bi2Sr2CaCu2O8 (Bi-2212), and determine
the translation vector between two crystal grains separated
by a planar fault with an accuracy better than previously
achieved with established techniques.

In Gabor’s in-line holography, a great part of the diverg-
ing electrons illuminates areas outside the specimen and
acts as a reference to record the phase information that
characterizes a hologram. Our purpose is to study defects,
which are deviations from perfect crystal structure, so we
let all electrons propagate through the specimen, and the
0031-9007�00�85(24)�5126(4)$15.00
electrons that propagate on one side of the defect may be
looked upon as the reference wave field. In this study we
use a small divergence of the incident beam and restrict our
study to the measurement of displacement vectors associ-
ated with planar faults. Thus, in the following, we use the
term coherent electron diffraction rather than holography.

To calculate the convergent beam electron diffraction
pattern that forms in far field when a coherent point source
is placed at micrometer distances above the specimen, we
consider the phase difference for different paths from the
source through the specimen for electrons scattered in a
certain direction. We start with the one-dimensional case
indicated in Fig. 1. Here, the short vertical lines represent
atomic planes separated by a distance c. H is the distance
from the probe, or crossover, to the specimen, R is the
horizontal displacement at the fault that is placed at the

FIG. 1. Schematic of the experimental setup. The short verti-
cal lines represent in the simplest situation of atom planes with
spacing c. H is the distance from the source, of crossover, to
the specimen, R is the horizontal displacement at the fault that
is placed at the vertical mirror in the figure, and a is the con-
vergent beam angle also defining the illuminated area on the
specimen.
© 2000 The American Physical Society
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vertical mirror in the figure, 2u is the angle relative to
the vertical axis, l0 is the electron wavelength, and F�u�
is the scattering amplitude of the slice of the crystal repre-
sented by one of the vertical lines in Fig. 1:
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Here the distance xn is
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The summation is over the whole illuminated area; that
is jxnj # rmax where rmax is the radius of the beam at
the specimen with N � �2rmax 1 c 2 R��2c. The con-
vergent beam angle is 2a � 2rmax�H and the intensity
I � ww�. In two dimensions, Eq. (1) becomes
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where �g is the reciprocal vector. The position vector of the
lattices is given by

�r �
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where �a and �c are basis vectors in the projection.
Figure 2 shows the calculated diffraction disks based

on Eq. (2) for different R and H. In Fig. 2(a) with R �
0, there is no contrast within the disks, except for the
Fresnel diffraction of the circular aperture, as expected for

FIG. 2. (a)–(d) The effect of the displacement R and the dis-
tance H for reflections of 000–005 of a test crystal. (a) R � 0,
(b) R � c�4, (c) R � 2c�4, (a)–(c) H � 160 mm, and
(d) R � c�4, H � 1600 mm. The arrow pairs in (b) and
(c) indicate the reversal of the asymmetry of the fault contrast,
which can be used to determine the sign of the displacement.
(e) shows the contrast for different phase shifts which can be
used to determine the accuracy of the measurements. The phase
shifts are indicated in fractions of 2p below the disks.
a perfect crystal with no overlap between the diffraction
disks. When we introduce a displacement vector R � c�4
perpendicular to the incident beam direction, we see in-
terference fringes in reflections where �g ? �R differs from
an integer; while when �g ? �R is equal to an integer, there
is no contrast, as is the case for the 004 reflection. This
agrees with what we know from conventional diffraction
studies [9,10]. A difference from conventional imaging,
however, is that, with the coherent probe close to the speci-
men, strong contrast is seen simultaneously in many re-
flections, including high-order ones, when the electrons
propagate nearly parallel to the interface, i.e., the inter-
face is viewed edge on. This contrast fades away with
increasing distance between the specimen and probe, as
seen by comparing Figs. 2(b) and 2(d). With further
increase in H, these disks will eventually correspond to
conventional dark-field images. The advantage of our ap-
proach is that we observe simultaneously a large num-
ber of diffraction disks; each of them is a shadow image
of the illuminated area. The contrast in the central disk
and the reflection disks can be related to the out-of-focus
bright-field (BF) and dark-field electron microscopy im-
ages. The strongest contrast is seen for �g ? �R � 0.5,
and the fringes are asymmetric for odd-index reflections.
These features can be used to determine the sign of the
displacement. We note that the asymmetric contrast is
mirrored around the center of each odd-order reflection
when the displacement vector is changed from R � c�4
in Fig. 2(b), to R � 2c�4 in Fig. 2(c).

These calculations are in agreement with the predictions
of Cowley [11]. For a perfect crystal of uniform thickness,
each nonoverlapping diffraction disk would be the same as
that with a noncoherent probe with a one-to-one correspon-
dence between a point on the specimen and a point in each
of the disks. However, for a sample that is not perfectly
periodic in the directions perpendicular to the beam, the
interference effects caused by the coherence of the probe
give intensity distributions in the diffraction patterns that
depend on the deviation from periodicity.

The structural defects in superconducting oxides have
been studied intensively in the last decade because
of their influence on flux-pinning and current-carrying
capacities [12]. We have used coherent electron diffraction
to address planar defects, namely, (001) twist boundaries
and stacking faults associated with intercalated layers
in Bi2Sr2Can21CunO2n14 (n � 1, 2, or 3). The lattice
parameters a and b are approximately 0.540 nm, but vary
slightly with n, while c � 2.4369 nm for n � 1 [13],
c � 3.087 nm for n � 2 [14], and c � 3.7074 nm for
n � 3 [15]. We limit this brief presentation to two ex-
amples of intercalations on the (001) plane of Bi-2212 that
illustrate the accuracy of the technique. Measurements of
displacements across twist boundaries will be published
separately.

In our experiments, diffraction patterns, or shadow
images, were in most cases recorded on imaging plates.
Energy-filtered shadow images of pertinent diffraction
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disks were obtained with the Gatan Imaging Filter and
digitally acquired with the attached CCD camera. Fig-
ure 3(a) is a real-space image with the crossover above
a sample of Bi-2212. It exhibits Fresnel fringes at the
rim of the illuminated area, as well as a lattice image of
the crystal. The periodicity of the image corresponds to
half a unit cell of Bi-2212 along the c axis. A careful
inspection of the lattice image suggests a stacking fault
in this area, as indicated by arrows. The contrasts from
this planar fault are much more visible in the shadow
dark-field images, as demonstrated in Figs. 3(b)–3(h)
and Fig. 4. In the experimental pattern of Fig. 3(b), the
first reflection on the 001 row which is nearly lacking
contrast is the 0, 0, 10, suggesting a displacement vector R
close to c�10 � 0.3087 nm [Fig. 3(d)]. A displacement
of c�5 � 0.6174 nm can be ruled out because of the
additional extinction at the 115 reflection [Fig. 3(c)].

The intensity in a diffraction disk depends on the value
of the structure factor. Furthermore, for increasing crys-
tal thickness, the intensity of one reflection also depends
on the structure factors of other reflections through dy-

FIG. 3. (a)–(f ) show an extrinsic stacking fault due to the
addition of a �Ca 1 CuO2� layer in Bi2Sr2CaCu2O8. (a) A real-
space image (002 lattice fringes) with the crossover above the
sample. The inset is an enlargement of the boxed area, showing
a wide lattice fringe at the location of the fault denoted by an
arrow. (b) Experimental diffraction pattern of the �1 10�� zone
recorded on a film negative. (c),(d) Calculated patterns using
the kinematical approach with R � d005 � 0.6174 nm (c) and
R � d0010 � 0.3087 nm (d). (e) 008–0012 reflections recorded
with a zero-loss energy-filtered CCD camera. (f ) Calculated
diffraction pattern with R � 0.322 nm giving a best fit to the
008–0012 reflections in (e). (g),(h) show an intrinsic fault due
to the removal of a �Ca 1 CuO2� layer in Bi2Sr2CaCu2O8.
(g) 008–0012 reflections recorded with a zero-loss energy-
filtered CCD camera. (h) Calculated diffraction pattern with
R � 0.319 nm giving a best fit in (g).
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namical coupling. In previous studies under similar ex-
perimental situations, except for a noncoherent source, we
have taken advantage of this dynamical coupling to address
charge transfer in superconductors by determining accu-
rately the values of structure factors [16,17]. When the
electron probe illuminates a thin flat area of the specimen,
the features within the diffraction disks are to a large extent
caused by the displacement vector R and the distance H
between the crossover and the specimen. Thus, the val-
ues of the structure factors serve mainly to scale the in-
tensity of the individual disks. In the following we have
omitted this scaling which, in the kinematical case, i.e., a
very thin foil with negligible dynamical coupling, is the
same as dividing the intensity within each disk by the
structure factor squared. Calculation with the displace-
ment vector c�10 � 3.087 nm is shown in Fig. 3(d). For
larger g vectors the sensitivity to displacement increases.
We notice from the experimental pattern in Fig. 4(a) that
it is the 1, 1, 29 rather than the 0, 0, 30 reflection that is
closest to featureless, and this corresponds to a displace-
ment of 3c�29 � 0.319 nm. By further simulations and
comparisons with experiment, focusing particularly on the
1, 1, 29 disk, we note that a displacement R � 0.322 nm,
Fig. 4(c), gives too strong a contrast, while the best fit to
experiment, Fig. 4(b), was for R � 0.320 nm, Fig. 4(d).

Another type of fault we studied also has weak con-
trast for l � 10, 20, and 30, and extinction for l � 29.
However, by comparing the energy-filtered experimental
disks in Figs. 3(e) and 3(g), we note that the asymmetry
of the fringe contrast of the fault in Fig. 3(g) is reversed
compared with the fault in Fig. 3(e). The reversed posi-
tions of the vertical, wide black fringes are evident in the
008 and 0012 reflections, suggesting an opposite sign of
the displacement vector. While the contrast from the fault
we presented in Fig. 3(e) fits with the contrast asymmetry
of the extrinsic fault in Fig. 2(b), the fault in Fig. 3(g)
fits with the contrast asymmetry of the intrinsic fault in
Fig. 2(c). This is confirmed in the simulation shown in
Figs. 3(f) and 3(h).

FIG. 4. An extrinsic stacking fault due to the intercalation of
a �Ca 1 CuO2� layer in Bi2Sr2CaCu2O8. Diffraction pattern
near the �1 10�� zone, recorded with an imaging plate sys-
tem, showing high-order reflections. (b) Enlarged reflections
of 1, 1, 27, 1, 1, 29, and 1, 1, 31. (c),(d) Calculated reflections
for R � 0.322 nm (c) and R � 0.320 nm (d).
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We estimate the accuracy in the measurements by using
the expression jDRj � jDn�gj. Here, Dn is the deviation
from the integer n associated with the nth order reflec-
tion g. Figure 2(e) shows the residual contrast for Dn �
0.005 0.05 which can be used as an initial guideline to es-
timate the accuracy of the measurement. We note that the
fault contrast increases with increasing Dn. With this inter-
ferometric method at optimum convergent beam angle and
height from specimen to crossover, we estimate that the
fault exhibits sufficient contrast for Dn $ 0.01, similar to
the value for BF imaging [18]. However, with the method
we use, we observe the contrast in many reflections simul-
taneously, especially high-order reflections, and thereby
improving the information content and accuracy. Based on
the simulations we have performed, some of them shown
in Figs. 3 and 4, we arrive at R � 0.320 6 0.002 nm for
the extrinsic fault, and R � 20.319 6 0.001 nm for the
intrinsic one. Here, the error ranges were derived from a
quantitative x2 � S�Iexp 2 Ical�2�S�Iexp�2 analysis with
x2 , 0.06. In high-resolution microscopy, an accuracy of
one hundredth of nm has been achieved in the determina-
tion of displacement across planar faults in diamond [19],
and a higher accuracy was reported in a study of antiphase
boundaries in GaAs based on conventional BF images [20].
Coherent beam electron diffraction has the potential of an
even higher accuracy than the 1 pm reported in this study.
This is an interferometric technique, and thus the resolu-
tion is not limited by the wavelength of the electrons, but
rather by the number of lattice planes on each side of the
fault that contribute to the Bragg reflections. In that sense
it is similar to a spectrometer where the accuracy of the
wavelength determination is inversely proportional to the
number of lines in the grating.

The extrinsic and intrinsic stacking faults in Bi-2212,
associated with inserting and taking out a slice from
the crystal consisting of a �CuO2 1 Ca� layer, result in
the replacement of half a unit cell along the c axis of
Bi-2212 by half a unit cell of Bi2Sr2Ca2Cu3O10 (Bi-2223)
or Bi2Sr2CuO6 (Bi-2201), respectively. Based on the
reported values of the lattice parameters along the c axis,
half a unit cell of Bi-2223 and of Bi-2201 are 0.310 nm
longer and 0.325 nm shorter, respectively, than half a unit
cell of Bi-2212. Our measurements deviate significantly
from these values. This may not come as a surprise con-
sidering the strain caused by the constraint that the layers
are intercalations in Bi-2212 with a slightly different area
of the unit cell in the a-b plane. What we observe is that,
within the experimental accuracy of 1–2 pm, the material
shrinks or expands 3

29 of the lattice parameter c by the
subtraction or addition of a slab from Bi-2212 consisting
of a �CuO2 1 Ca� layer. This fractional displacement
corresponds to 0.319 nm for the reported value of
c � 3.087 nm [14].

In summary, by forming an electron probe close to a
specimen in a manner similar to that originally proposed
by Gabor to record a hologram, we have measured accu-
rately the displacement associated with planar faults. This
interferometric approach is unique in that there are no ad-
justable microscope parameters, the contrast is strong even
when the fault is viewed edge on, a large number of shadow
images of the fault corresponding to different Bragg reflec-
tions can be studied simultaneously, and the accuracy is,
to our knowledge, the highest that has been achieved in
measurements of displacement vectors.
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