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Historical Introduction
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History: The Golden Age of Lasers

May 17, 1960: The Beginning.  Ted Maiman’s Ruby Laser.
Nature 187, 493 (August 6, 1960).

• Nd:glass optical fiber laser: Snitzer, PRL 7, 444(1961).
• Q-Switched Laser: Hellwarth, Bull. Am. Phys. Soc. 6, 414 (1961).
• GaAs laser diode: GE, IBM, Lincoln Labs,1962.
• Modelocking, 1963.
• Nd:YAG laser, 1964.
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Early SSL Applications

Compliments A. Siegman



New materials, techniques provide unprecedented laser intensities ...
Big Science

Big Science

Small Lab
Small Labin thein the

year
1960     1970     1980      1990     2000

1015

1010
mode-locking
Q-switching

Relativistic 
nonlinear optics LWFA+

1010

1012Non perturbative
non linear optics

Chirped Pulse 
Amplification (CPA)

Perry & Mourou, Science 264, 917 (1994).

CWS Starts PhD w/ MCD

CWS Finishes PhD

Focused Optical 
Field (V/m)

Focused
Intensity
(W/cm2)
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Chirped Pulse Amplified Laser System

UCSD 20UCSD 20--Hz, 20Hz, 20--fs fs 
55--TW Laser SystemTW Laser System

•• CompactCompact
•• Ultrafast Ultrafast –– 20 20 fsfs
•• Ti:SapphireTi:Sapphire
•• Synchronous Synchronous 

Pump & ProbePump & Probe
•• 100 100 mJmJ @ 20 Hz@ 20 Hz
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Chirped Pulse Amplification

Inverse delay line

t

t

Solid state amplifiers

!! Saturation is Reached Safely:Saturation is Reached Safely: IIpeakpeak << << IIdamagedamage

t

Dispersive delay line

Strickland & Mourou, Opt. Comm. 56,  219 (1985).
Cook, Proc. IRE, 310 (1960).

!! Peak Power Increase Proportional toPeak Power Increase Proportional to

t

Short pulse 
oscillator

∆tstretch = Fsat/Idamage
Nd:Glass ~ 1 ns  
Ti:Al2O3 ~ 200 ps

1000
0

stretch >>
∆

∆
t

t
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Disperse-O-Matic Freeware
(WARNING: Shameless Self-Promotion)

http://dom.creol.ucf.edu/ http://www.creol.ucf.edu/reu/
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Chirped Pulse Amplified Laser System

UCSD 20UCSD 20--Hz, 20Hz, 20--fs fs 
55--TW Laser SystemTW Laser System

•• Ti:SapphireTi:Sapphire
•• 800800--nmnm
•• 100100--mJ / pulsemJ / pulse
•• Excellent focusingExcellent focusing
•• 10101818 W/cmW/cm22
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Ultrafast CPA Characteristics
Compactness and high repetition rateCompactness and high repetition rate

NovaNova
Pulse duration 1 ns
10 kJ/beam
10 TW/beam
1 shot/hour

UltrafastUltrafast CPA SystemCPA System
Pulse duration 20 fs
100 mJ/beam
5 TW/pulse
72,000 shots/hour

UltrafastUltrafast CPA systems allow high experimental  “Utility”CPA systems allow high experimental  “Utility”
•• Signal averaging even at extreme intensitiesSignal averaging even at extreme intensities
•• High average flux of laserHigh average flux of laser--generated xgenerated x--rays, particlesrays, particles
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Big Science in the Small Laboratory

HighHigh--fluxflux
~10~10--keV xkeV x--raysrays

HighHigh--fieldfield
HighHigh--reprep--raterate
Ultrafast lasersUltrafast lasers
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Even Bigger Science in the Big Lab
JAERI Petawatt
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SAUUL Report: >10TW Facilities



UCF College of Optics & Photonics/CREOLUCF College of Optics & Photonics/CREOL--FPCEFPCE

SAUUL Report: PW Facilities

UT Austin 1PW        Nd:glass         160fs       130J   Under Construction
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What We Care About

18 2osc
0 1  or 10 W/cmva I

c
= ≈ ≈

Laser Sources WG, AACW ‘96
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Pulse Duration

Agostini & DiMauro, Rep. Prog. Phys. 67 813 (2004).
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Average Power Challenge

• Traditional USP 
lasers are limited to 
watt-level average 
powers.

• Transitioning of short 
pulse high-intensity 
applications require 
kW-level USP lasers. mW

kW

W
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Efficiency & Saturation Perspective
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Saturation Fluence

σ

hν

sat
hF ν
σ

=
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Efficient Solid-State Amplifier

• High Efficiency in Final Amplifier
– Operate above the saturation fluence

Fsat
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Nd:YVO4

Nd:YAG

Nd:YLF

Er:Glass

Cr:Forsterite
Cr:LiSAF

Nd:Glass  
Fsat ~ 5 J/cm2

Ti:Sapphire

Fsat ~ 1 J/cm2

Cr:YAG

Cr:LiCAFEr:YAG

Yb:YAG
Yb:Glass

Fsat ~ 30-50 J/cm2

RG6 & Semiconductors
Fsat ~ 1 mJ/cm2

Compactness & Saturation Fluence

High Fsat materials
can be more compact. 

1-J Beam Areas at Fsat
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Saturation Intensity
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Energy Considerations in USPs
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Laser Media



UCF College of Optics & Photonics/CREOLUCF College of Optics & Photonics/CREOL--FPCEFPCE

Damage Fluence Limits

Ultrashort-pulse damage thresholds 
limit usable fluences.

Dielectrics

Metals

B. Stuart, et al., JOSA B 13, 459 (1996); 
ibid, PRL 74 (1995).
Pronko, Opt. Comm. 114, 106 (1995).
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Laser Media
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Optical Damage Limits
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eXtreme Chirped Pulse Amplification 



XCPA Semiconductor Amplifier
Limits ASE & Nonlinearities

Solid-State Amp
compressed

Single-pulse CPA
stretched

SOA gain
sub-µs to ms

compressed

50-MHz pulse train stretched to ~ 20ns 

Burst mode
XCPA

SOA operated as 
CW amplifier.
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eXtreme CPA
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Pulse Durations: 2-ps (red), 20-ps (yellow), 200-ps (green), 2-ns (blue), 20-ns (violet)

200-ps gain lifetime, 30-dB gain
Fsat = 1.0-mJ/cm2;  Isat = 5.1 MW/cm2

λ = 980-nm;   σ = 2.5x10-16 cm2
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Optical Damage Limits



UCF College of Optics & Photonics/CREOLUCF College of Optics & Photonics/CREOL--FPCEFPCE

Thermal Damage Limits
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Sub-0.5ps Materials
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High-power laser diodes
LightStack from Coherent

2-kW @ 940-nm. 50% wallplug efficiency
2 19-bar arrays in series electrically, parallel cooling

Pump Stack Originally developed for Ytterbium Fiber Pump
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High-power laser diodes
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Sub-0.5ps Materials
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High-Power Diode Pump-able
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What We Care About

18 2osc
0 1  or 10 W/cmva I

c
= ≈ ≈

Laser Sources WG, AACW ‘96
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Systems Which Access 
AAC-Relevant Rep-Rates

Saturated Rep-Rate [kHz]
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Energy Storage Density 

Energy Storage Density [J/cm3]
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Nd:Glass

• Energy storage good 
– Fsat = 7 J/cm2

• Pumping straightforward
– 400 microsecond lifetime

easily flashlamp pumpable
• Dispersion control easier

– Picosecond pulses require 
only GDD and maybe cubic
compensation

• Repetition limited
– Thermal loading a problem. Must wait to re-equilibrate

• Pulse duration limited to around a picosecond
– Typically 300 fs to 1 ps 

• First PW Laser – LLNL/NOVA PW
• Majority of planned PW’s are Nd:Glass
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Yb:Glass
• High energy storage

– Fsat = 30-50 J/cm2 

– Damage is a major issue in efficiency and robustness
• Diode pumpable

– Very long lifetime (840 µs) and absorption at diode wavelengths (915nm, 
980nm).  Not optimal for 10-100kHz rep-rate applications.

• Shorter pulses possible
– Fluoresence bandwidth should support ~100 fs

• Stretching requirements difficult - CFBG?
– ∆t = 6ns to reach one times saturation safely

• Can be easily implemented in Fiber geometry
– >kW CW average powers, 65% slope efficiency demonstrated (Limpert

CLEO ‘04)
– 0.6-mJ, 1.6-kHz, 800-ps stretched, 400-fs compressed (Limpert CLEO ‘04)

• Yb:glass PW’s under construction
• Yb:SFAP - Mercury Laser @ LLNL.  100J, 10 Hz, ns.
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Ti:Sapphire

• Sapphire great optical quality, high damage threshold
– Also superior thermal material.  Sapphire is often used as 

transparent heat sink 
• Ideal saturation fluence 

– Fsat = 1 J/cm2 yields a stretching requirement of only 200 ps
– Just below damage threshold

• Huge bandwidth
– Theoretically could support 3-fs pulses 

• Short lifetime
– 3 us requires laser pumping or heroic flashlamp circuitry

• SHG-Nd pumping.  No high-power green laser diodes.
• Widely implemented for 1-100 TW class systems.
• PW’s: JAERI, FOCUS
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Cr4+:YAG

• Versatile Pumping
– Diode-pumped @ 940-nm, 980-nm
– Laser-pumped by Nd, Yb lasers

• Operates at telecomm wavelengths (1.3 and 1.5um)
• Excellent optical quality material available (Passive Q-

Switch Use)
• Ideal saturation fluence 

– Fsat ~ 0.5 J/cm2  yields a stretching requirement of only 100 ps
– Just below damage threshold

• Large bandwidth
– Theoretically could support sub-10 fs pulses 

• Short lifetime
– 4.5 us requires laser pumping
– High rep-rate pulsed amplifier for 10-100 kHz applications
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Er:fiber

• Telecom wavelengths: much hardware available
– EDFA: The most common telecommunication fiber amplifier

• All diode pumped
• Short pulses

– 100 fs possible

• Large scale hosts not available so limited energy out
• Reliable source of sub-100-fs pulses at 1550nm.
• Sub-MW peak powers: TW/cm2 at 10’s MHz rep-rates
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OPCPA?

(T. Ditmire)



UCF College of Optics & Photonics/CREOLUCF College of Optics & Photonics/CREOL--FPCEFPCE

Cr:LiSAF

• Flashlamp pumpable and diode pumpable
– 67 µs lifetime, absorption at diode wavelengths
– Diode pumped fs oscillators have been made with this material

• Good but not best bandwidth
– Theoretically around 10 fs

• Inferior material properties
– Early crystals dissolved in their water cooled housings
– Easily fractured

• Inferior optical quality
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Pros & Cons of Amp Shape

Thermal DistortionsAperture limit & beam 
combining.  USP 
nonlinearities. ASE.

Mode, Mode, and ModeThermal Lensing & ModeKey Challenge

13 kW, M2 ~ 41.3 kW, M2 ~1.33 kW, M2 ~ 2.5500 W, M2 ~ 1.5Best Power with 
good Beam Qual

Up to 95%~100%Up to ~80%Up to ~80%Mode Fill Factor 
(TEM00)

GoodGood for single mode.  
More challenging for large 
mode fibers.

Challenging, especially at 
large aspect ratios.

Good at low power.Mode Control

Minimal due to 1D heat 
flow.

None for glass fibers.None in ideal case.Significant, but can be 
dealt with.

Stress 
Birefringence

Minimal due to 1D heat 
flow.

Significant, but can be 
dealt with.

None in y-z (zigzag 
averaging), weak in x-z.

Significant, but can be 
dealt with.

Thermal Lensing

DiskFiberZigzag SlabRod
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What Does the Future Hold?

• Diode-pumped Fiber Osc’s & Amps: 
– Yb (1um), Er (1.5um)
– High rep-rates, limited by USP NLO

• Disk Amps: Yb, Cr4+

• X-CPA & SOA’s
• Nano-photonics & Integrated Optics
• Dispersion Management

– Improved Gratings (~J/cm2 Damage Thresh.)
– Chirped Fiber Bragg Gratings
– Compact Free-Space Systems

• Engineered Composite Media
– Large-area “crystals”: ceramic, fused, etc.
– Thermal Management Improvements (because we must!)

• Multi-kW, Multi-kHz USPs soon!
• GHz GW and MHz TW?



X-CPA Generic Architecture

Modelocked 
Laser

Pre-Stretch
~100 psec

Primary Stretch – 20 nsec Primary Compress

Primary Optical 
Amplification

Pre Optical 
Amplification

Final Compression
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DARPA Challenge
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Stu’s Shoe
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DARPA Challenge
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Size Reduction Obtainable from XCPA

Traditional mode locked laser for 
Ti:Sapphire USPL (KM Labs, Boulder).

46 inches

10inches

 

A packaged mode locked 
laser diode X-CPA USPL

1 inch

0.5 inch

This is the laser diode based 
Mode locked laser to the same 
scale as the traditional mode
Locked laser for a Ti Sapphire

2760 in3 for the volume for the traditional Ti Sapphire ML source 
0.125 in3 for the ML source for the X-CPA 

22080 time reduction in volume
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X-CPA Impact

10in

14in
8in

48in
24in

9in
=

Volume 10368in3 for a 1 Watt Ave Power
Ti:Sapphire Power Supply and Water cooling 

system are not shown in the photograph 
Volume 1120in3 for a 0.5 Watt Ave Power

XCPA Power Supply not shown. 

Volume of power supply ~560in3

Water Cool Not Required
Volume of power supply 3456in3

Volume of water cool 3000in3
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