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Motivation

= [Irradiation damage results in complex processes of
microstructural and compositional changes in materials

= These processes are all driven by production, diffusion and
reactions of point defects

= Classical modeling approaches (e.g., clustering and nucleation
theory, rate theory) are not adequate



Void formation

Caused by vacancy super-saturation

It can be homogeneous or
heterogeneous

Shape depends on crystal type
Void lattice is possible

Coupling with stress and
compositional changes

In the presence of gas atoms, voids
turn into gas bubbles

Irradiation-induced voids in
(a) steel, (b) aluminum and (c) & (d)
magnesium



Research objective

Develop a unified mesoscale model to predict the concurrent
microstructural and compositional changes in irradiated materials

Mesoscale = resolve space

Concurrent = processes are all driven by point defects generated by
Irradiation

Materials systems under consideration:

e Pure metals
» Metallic alloys
e Oxides

without and with
gas in the matrix



Why the mesoscale?

Breakthroughs in understanding and predicting materials
performance can be made through success at the mesoscale
because this is where the materials complexity reveals itself;
the mesoscale materials models fold the fundamental materials
properties with the microstructural complexity to both predict
and understand the macroscopic response of materials ...



Approach

= Non-equilibrium thermodynamics

= Field theory of defects and microstructure
—> phase field theory

= Statistical physics underpinning



Typical phase-field models

A typical phase field model is developed in two steps:
= Construct a free energy functional of the system

= Derive kinetic equations following Onsager formalism of non-

equilibrium T.D.
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Conservation properties

For a system decaying towards a lower energy state, the last
Kinetic equations satisfy two conditions:

= Free energy decay (irreversibility)

d
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Conservation properties under irradiation

Irradiated materials are driven systems; irradiation deposits
energy and “mass” into the system
= Free energy is not necessarily decreasing with time ...

d
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= Mass is not necessarily constant ...
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= Mass > conserved order parameters (defects or actual atoms)



Phase-field model for irradiated materials

Follow same steps without irradiation and add sources to

account for generation and reactions.
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Example: void formation due to vacancy supersaturation
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Point defect energy in matrix
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Energy landscape for matrix with vacancies

void

Fle,m)

matrix with thermal
equilibrium
concentration




Numerical tests

Void growth and shrinkage (Gibbs-Thompson Effect)
Interaction between voids (Ostwald ripening)
Nucleation of voids (homogeneous)

Nucleation in the vicinity of pre-existing void



Void growth and shrinkage

1o g2 Growth and shrinkage take

place depending the
background concentration
and the void radius

Void radius

Gibbs-Thompson Effect

Figure 5. Void radius as a function of time for different initial vacancy supersaturation levels.



Void growth and shrinkage

.] .. '1
h (a) (b) F

IO .0

(d)

shrinkage

growth



Void-void interaction

Ostwald
ripening
example
Large voids O
grow at the )
expense of small
ones

Interaction between two voids surrounded by unsaturated matrix, r,=5, r, = 10




Homogeneous nucleation of voids under vacancy generation

Vacancy field evolution showing void nucleation due to radiation induced
vacancies

Voids nucleate due to fluctuations in the vacancy concentration field. The
nucleation process is homogeneous



Nucleation close to a pre-existing void

Vacancy field evolution showing void growth in the
presence of radiation effects

Initial void grows while new voids nucleate ...

Ripening suppresses the small voids nucleating in the vicinity of the large one.



void fraction (porosity)

Analysis of nucleation and growth
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number of voids

Void density as a function of time
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Role of grain boundaries

nucleation growth

denuded GB
regions



Introducing interstitials
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Phase field model with interstitials included
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Cascade representation




Evolution of a single cascade
Diffusion and recombination of vacancies and interstitials




Void Growth
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| .
¢, and ¢, fields for void growth in the presence of excess vacancies in the
surrounding matrix. S, = 20, S, = 1.0
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Fields profiles during void growth
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Fields profiles at a cross-section at the center of the simulation cell.
Void growth in the presence of excess vacancies in the surrounding matrix. S, = 20,

S; = 1.0 (No radiation source)



Void radius with supersaturation
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Void growth under irradiation

»

N = (l NS #
(d) t=3

(b) =80

(a) Initial 7 =0

Vacancy and interstitial field evolution showing void growth in the presence of
radiation effects.
$,=50, S,=1, P =0.25, P, = 0.15 (on 128 x 128 grid)



Effect of thermal fluctuations on void growth under
Irradiation
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(a) Initial 7 =0

(a) Initial ¥ =0 (b) t=40 |

Vacancy and interstitial field evolution showing void growth in the presence of
radiation effects and thermal fluctuations.
$,=50, S,=1, P,=0.25, P,=0.15 on 128 x 128 grid



Void nucleation and growth due to irradiation

(a) Initial 7 =0

(a) Initial 7 =0 (b) =50 "~ (c) t=200

Vacancy and interstitial field evolution showing void nucleation due to radiation
effects. S,=50, S, = 1, P =0.25, P, = 0.15 on 128x128 grid



Effect of thermal fluctuations on void nucleation and growth

(a) Initial 7 =0

(a) Initial 7 =0 “ (b) t:5

Vacancy and interstitial field evolution showing void nucleation radiation
effects and thermal fluctuations.
$,=50,S,=1,P,=0.25, P, = 0.15 on 128 x 128 grid



Void Fraction

Analysis of Nucleation and Growth
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NOTE: The change in incubation time with decrease of cascade size and with thermal
fluctuations



Void growth under irradiation
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Vacancy and interstitial field evolution showing void growth in the presence of
radiation effects.
$,=50, S, =1, P,=0.25, P, = 0.15 (on 256 x 256 grid), r,,; = 10
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Void nucleation under irradiation

(a) Initial 7 =0

o

t =105

(a) Initial 7 =0 (b)

Vacancy and interstitial field evolution showing void nucleation presence of
radiation effects.
$,=50,S,=1, P =0.25, P,=0.15 (on 256 x 256 grid)



Role of grain boundaries
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Nucleation and growth (movies)




Nucleation and growth (movies)




Gas effects and bubble formation
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The model has been extended to include gas
atoms and to model the nucleation and
growth of gas bubbles. Preliminary results
show good agreement with experimental
observations



Summary

= A phase field model for void/bubble nucleation and growth
= Vacancies, interstitials, gas atoms represented

= Models seems to predict the defect, void and bubble dynamics
under irradiation



In progress

= Current model:

* Thin interface analysis to fix parameters and apply
to real materials

= Model dislocation loop nucleation

= Add stress effects and diffusion anisotropy (capture
void lattices)

= Anisotropic surface energy — directional dependence
of gradient energy term

= Generalization to multi-component systems



