<u>C</u>loud Resolving Model <u>R</u>adar <u>Sim</u>ulator (CR-SIM)

Aleksandra Tatarevic and Pavlos Kollias Mariko Oue

Applied Radar Science Group

www.radarscience.weebly.com

About the CR-SIM

□ Designed to directly accept the high resolution CRM output (e.g., WRF, ICON, RAMS), and outputs the simulated radar observables at the model vertical and horizontal resolution

□ Microphysical packages implemented:

- MP_PHYSICS=8 WRF with the Thompson bulk microphysical scheme (Thompson et al, 2008)
- MP_PHYSICS=9 WRF with the Milbrandt and Yau 2-bulk microphysical scheme (Milbrandt and Yau 2005a, 2005b)
- MP_PHYSICS=10 WRF with the Morrison 2-moment bulk microphysical scheme (Morrison et al, 2015)
- > MP_PHYSICS=20 WRF with the spectral bin microphysical scheme (Fan et al., 2012)
- > **MP_PHYSICS=30** ICON with the 2-bulk microphysical scheme (Seifert and Beheng 2006)
- MP_PHYSICS=40 RAMS with the 2-bulk microphysical scheme

(implementation of Morrison P3 scheme is planned (Morrison and Milbrandt, 2015))

- □ *The hydrometeor classes* from the WRF model (cloud, ice, rain, snow, graupel) are represented "*the scattering types*" for which the look-up tables are build
- The scattering LUT's are obtained by using the Mueller-matrix-based code kindly provided by Dr. J. Vivekanandan and fully described in Vivekanandan et al. (1991) and Vivekanandan and Bringi (1993).

Look up tables - the scattering types

Туре	Diameter range	Bin resolution	Temperat ure [°C]	Density [gr/cm^3]	Shape [a/b is the axis ratio- ratio of minor to major axis]	Orientation [2σ truncated with mean car and standard Random in az direction]	Gaussian, nting angle θ deviation σ ; ːimuthal	
cloud	1 μm -250 μm	1 µm	[-20° 20°] , every 2°	1	Spherical	-		
rain	100 μm – 9 mm	10 µm	[0° 20°] every 2°	1	Oblate a/b according to Brandes et al., 2002	θ=0°, σ=5°		
ice	3 µm – 1.5 mm	1 µm	-20°	[0.4 -0.9] Every 0.1 gr/cm^3	Oblate a/b=0.2	θ=0°, σ=0.5°	_ Ice : simpl	e models of plate
snow	100 μm – 5 cm	10 µm	-20°	[0.1 -0.6] Every 0.1 gr/cm^3	Oblate a/b=0.6	θ=0°, σ=0.5°	type ice crystals, e.g., stellar or dendritic crystals which orient themselves by their long dimension in the horizontal plane	
graupel	5 μm – 5 cm	10 µm	-20°	0.5	Oblate a/b=0.8	θ=0°, σ=0.5°		

- the radar specific parameters

-frequency 3 GHz, 5.5 GHz, 9.5 GHz, 35 GHz, 94 GHz

-elevation **0 – 90 °**, every **1**° for non-spherical hydrometers fixed (arbitrarily to 90°) for the spherical particles (cloud)

Rain Zh and Zdr in function of diameter at different temperatures

Look up table - Rain

-Rain Zdr, Kdp, Adp, LDR at all temperatures (0-20 C, per 2C) in function of elevations for a fixed diameter 0.3 cm (20 dBZ at Raleigh)

-The axis ratio a/b=0.7.

-Concentration of particles is 1 particle per m³ per size.

Rain Zdr in function of size at all elevations

Look up table – Snow

Zh and Zdr at 3 GHz, 5.5 GHz and 9.5 GHz in function of diameter for snow density fixed to 0.1 gr/cm³, *Elevation angle 0 degree and axis ratio 0.6. Assumed concentration is 1 particle per m³ per size.*

Zh and Zdr at 3 GHz, in function of diameter for snow densities from 0.1 gr/cm³ (solid line) to 0.6 gr/cm³ (dashed lines).

Elevation angle 0 degree and axis ratio 0.6. Assumed concentration is 1 particle per m³ per size.

Zdr, Kdp, Adp in function of elevation for fixed diameter (3 cm, ~20 dBZ at 3 GHz). Snow density is 0.1 gr/m^3. Axis ratio 0.6. Assumed concentration is 1 particle per m^3 per size.

Look up table – Snow

Zh, Zdr Kdp and Adp in function of diameter at different elevations Snow density is 0.1 gr/cm³, axis ratio 0.6, radar frequency 3 GHz. *Assumed concentration: 1 particle per m³ per size.*

CRSIM – USER parameters

- > The names of the *input and output files*
- > The microphysics scheme ID (MP_PHYSICS=8, 9, 10, 20, 30, or 40)
- > **Domain size** for the **CRSIM** simulation <= than the input WRF scene
- > The names of the assigned scattering type to each hydrometeor class

Each scattering type is defined by unique characteristics regarding **the specific assumptions about the particle shape and orientation** which are defined when running the t-matrix and Mueller-matrix codes

For example rain with axis ratio as in Brandes et al, 2σ truncated Gaussian, with mean canting angle $\theta = 0$ and standard deviation $\sigma = 5$ is the one possibility of scattering types for rain. Rain with axis ratio based on Andsager et al (1999), and the same parameters for the orientation distribution would an other possibility for the rain scattering type.

NOTE : The new scattering types can be added without the changing of the **CRSIM** code

- Radar frequency (3 GHz, 5.5 GHz, 9.5 GHz, 35 GHz, 94 GHz)
- > The horizontal position and height of the radar in the input WRF domain
- The scanning mode: <u>fixed elevation angle (90 for example for vertically pointing) or 'ppi'</u> <u>mode</u>, where, the elevation of each WRF grid point (belonging to the CRSIM domain) is determined in function of distance to the radar origin
- Lidar simulation options
- Postprocessing options

CRSIM algorithm flowchart

Read USER parameter file

Read WRF input file(s), reconstruct needed meteorological variables and extract domain for the srsim simulation

Determine elevation angle
IF MP_PHYSICS=10 reconstruct the PSDs and compute the bin to velocities
Determine: -The nearest LUT elevation angle.
-The nearest LUT temperature if liquid
Read LUT for the scattering type assigned to this hydrometeor, compute radar simulated variables at desired sizes and save what needed for computation of variables for the "total" hydrometeor c

CRSIM OUTPUT (1)

DIMENSION NAMES		Description			
nx		Number of grid boxes along the horizontal E-W axis			
ny		Number of grid boxes along the horizontal N-S axis			
nz		Number of grid	Number of grid boxes along the vertical axis at WRF resolution		
nht		Number of hyd	Number of hydrometeor species		
VARIABLE	DIMENSION	UNITS	DESCRIPTION		
Zhh	[nx, ny, nz]	mm^6/m^3	Reflectivity at hh polarization		
Zvv	[nx, ny, nz]	mm^6/m^3	Reflectivity at vv polarization		
Zvh	[nx, ny, nz]	mm^6/m^3	Reflectivity at vh polarization		
Zdr	[nx, ny, nz]	-	Differential reflectivity		
LDRh	[nx, ny, nz]	-	Linear Depolarization Ratio		
RWV	[nx, ny, nz]	m/s	Reflectivity Weighted Velocity		
DV	[nx, ny, nz]	m/s	Doppler Velocity, positive downward		
DV90	[nx, ny, nz]	m/s	Vertical mean Doppler velocity (el=90°)		
SW	[nx, ny, nz]	m/s	Spectrum width		
Kdp	[nx, ny, nz]	deg/km	Specific Differential Phase		
Adp	[nx, ny, nz]	dB/km	Differential Attenuation		
Ah	[nx, ny, nz]	dB/km	Specific Horizontal Attenuation		
Av	[nx, ny, nz]	dB/km	Specific Vertical Attenuation		
Zmin	[nx, ny, nz]	dBZ	Minimum detectable reflectivity		

The *CRSIM* output consists of **6 netcdf files*** (for each hydrometeor type separately, five in total, and the main output file with the total hydrometer content), each with the same structure

* depends on the number of hydrometeor types

Note:

LUTs contain info for computation of other polarimetric variables than reported in the output; if needed, those variables can be easily added

CRSIM OUTPUT (2)

VARIABLE	DIMENSION	UNITS	DESCRIPTION
elev	[nx, ny, nz]	degrees	Elevation angle from horizontal
azim	[nx, ny, nz]	degrees	Azimuth angle (EAST=0°, NORTH=90°)
range	[nx, ny, nz]	m	Radar range
height	[nx, ny, nz]	m	Height
temp	[nx, ny, nz]	degrees C	Temperature
wcont	[nx, ny, nz]	kg/m^3	Water content
rho d	[nx, ny, nz]	kg/m^3	Dry air density
u	[nx, ny, nz]	m/s	U component of horizontal wind
V	[nx, ny, nz]	m/s	V component of horizontal wind
W	[nx, ny, nz]	m/s	Vertical air velocity
x_scene	[nx]	m	Scene extent in E-W direction
y_scene	[nx]	m	Scene extent in E-W direction
Av	[nx, ny, nz]	dB/km	Specific Vertical Attenuation
elev	[nx, ny, nz]	degrees	Elevation angle from horizontal
height	[nx, ny, nz]	m	Height
temp	[nx, ny, nz]	degrees C	Temperature
W	[nx, ny, nz]	m/s	Vertical air velocity
wcont	[nx, ny, nz]	kg/m^3	Water content

CRSIM OUTPUT (optional)

DIMENSION NAMES	Des	Description				
nx	Nur	Number of grid boxes along the horizontal E-W axis				
ny	Nur	Number of grid boxes along the horizontal N-S axis				
nz	Nur	Number of grid boxes along the vertical axis at WRF resolution				
n_layers	Nur	Number of cloud layers for ARSCL =10				
VARIABLE DIM		SION	UNITS	DESCRIPTION		
mpl_wavel [nx, 1		z]	m^-1 st^-1	MPL wavelength		
mpl_back_obs	[nx, ny, nz	z]	m^-1 st^-1	MPL observed backscatter		
mpl_back_true	[nx, ny, nz	z]	m^-1 st^-1	MPL true backscatter		
mpl_ext [nx, :		z]	m^-1 st^-1	MPL extension coefficient		
mpl_rayleigh_back [n		z]	m^-1 st^-1	Molecular backscatter		
mpl_lidar_ratio [nx.		z]	-	MPL lidar ratio		
aero_back_obs [nx, 1		z]	m^-1 st^-1	MPL aerosol observed backscatter		
aero_back_true [nx,		z]	m^-1 st^-1	MPL aerosol true backscatter		
aero ext [nx, 1		z]	m^-1 st^-1	MPL aerosol extension coefficient		
aero_lidar_ratio [nx,		z]	m^-1 st^-1	MPL aerosol lidar ratio		
ceilo_back_obs [nx, 1		z]	m^-1 st^-1	Ceilometer observed backscatter		
ceilo_back_true [nx,		z]	m^-1 st^-1	Ceilometer true backscatter		
ceilo_ext [nx,		z]	m^-1 st^-1	Ceilometer extension coefficient		
ceilo_first_cloud_base [nx			m	Ceilometer first cloud base height		
arscl_cloud_mask [nx,		z]	-	Cloud mask from radar, mpl, ceilo_first_cloud_base		
arscl_cloud_source_flag	[nx, ny, nz	z]	-	Instrument source flag for cloud detection		
arscl_cloud_layer_top_height	[nx, ny, n	_layers]	m	Top heights of cloud layers for up to 10		
arscl cloud layer top height	[nx, ny, n	_layers]	m	Top heights of cloud layers for up to 10		

WRF Input scene

WRF V3.4.1 simulation with Morrison 2-moment microphysical scheme for the MC3E May 20 case

<u>**Grid**</u>: 600 x 510 km in horizontal; <u>1 km</u> <u>resolution</u> and 50 eta levels

(About 40 eta levels in vertical up to 15 km)

Vertical resolution : variable

- ~ 60 m ~250 m in the lowest 3 km (~2 grid points)
- $\sim 440m$ $~\sim \!\!\!450$ m from 3 km to 15 km (~28 grid points)

cloud mixing ratio at z=3.5 km

snow mixing ratio at z=7 km

> 200 300 400 500 x-grid length [km]

rain mixing ratio at z=3.5 km

graupel mixing ratio at z=7 km

00 200 300 400 x-grid length (kw)

ice mixing ratio at z=10 km

Morrison 2-moment microphysical scheme [MP_PHYSICS=10]

-5 hydrometeor classes : cloud, rain, ice, snow, graupel

- particles assumed spherical, with fixed with *fixed size-independent densities per hydrometeor class* (cloud and rain 0.997 gr/cm³, ice 0.5 gr/cm³, snow 0.1 gr/cm³, graupel 0.4 gr/cm³)
- The output prognostic moments are mixing ratio
 Qc, Qr, Qi, Qs, Qg in kg/kg
 Total number concentration
 Nr, Ni,Ns,Ng in 1/kg
 (~for cloud, the total number concentration, Nc is fixed~)

- The Gamma distribution with a fixed shape factor is assumed for each hydrometeor size distribution

 $N(D)=N_0 D^{\mu} e^{-\lambda D}$

gamma function

N0 intercept μ shape **fixed** λ slope

-for rain, ice, snow, graupel μ =0, so in fact we have exponential distribution -for cloud, μ is determined in function of droplet number concentration (Nc) and density of dry air, according to Martin et al., 1994

-The fall velocity size relationships for hydrometeor classes are specified

Cross sections of the CRSIM output at fixed height

At 1 km height

Radar is positioned at center of the small domain, 3 GHz

CRSIM OUTPUT

ICE ONLY

CFADs OF REFLECTIVITY

CFADs OF ZDR

20 18

16

14

6

Height [km]

31.62

10.00

3.16

1.00 0.32

0.10

CFADs OF DOPPLER VELOCITY

CFADs OF REFLECTIVITY WEIGHTED VELOCITY

+4010.00 3.16 20 15 1.00 0.32 dBZ 0.10 0.03 -21 -2: 0.01 -34 0.00 3 GHZ -50 0.00 20 -5 -2.5 0 2.5 5 Doppler Velocity [m/s] 20 -17.5 -15 -12.5 -10 12.5 15 17.5 -7.5 7.5 10 40 35 30 10.00 25 20 3.16 15 10 1.00 Reflectivity (dBZ) 5 0 0.32 -5 -10 -15 0.10 -20 -25 0.03 3 GHZ -30 -35 0.01 -40 300 x-mrid length [km] -45 -50 -20 0.00 -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 Doppler Velocity [m/s] 10 12.5 15 17.5 20 7.5 +4010.00 3.16 20 15 10 1.00 dBZ 0.32 0.10 35 GHZ -20 -25 0.03 -30 0.01 -50 0.00 20 20 -17.5 -15 -12.5 10 7.5 -5 -2.5 0 2.5 5 Doppler Velocity [m/s] 10 12.5 15 17.5 -----35 10.00 30 25 3.16 20 15 1.00 10 Reflectivity (dBZ) 5 0 0.32 -5 -10 0.10 -15 -20 94 GHZ 0.03 -25 -30 0.01 -35 300 crartid Lenath [km] -40 0.00 -20 ms⁻¹ 15 -12.5 -10 7.5 5 -2.5 0 2.5 5 Doppler Velocity [m/s] 5 20 ms⁻¹

CFADs OF DOPPLER VELOCITY WITH REFLECTIVITY

Summary

The CR-SIM is a simple (no instrument model) radar simulator suitable for Cloud Resolving Models (e.g., WRF, RAMS, ICON, SAM) with bulk and bin microphysics schemes.

Provides scanning radar observables (power and polarimetric variables) and profiling radar observables (mean Doppler velocity and spectrum width)

CR-SIM has a flexible framework that is expandable and can accommodate additional microphysical schemes and scattering LUT's.

The CR-SIM is written in Fortran 90 and an user manual is under development.