BNL Home
Org Chart

Our Research Mission

Scientists in Brookhaven's Condensed Matter Physics & Materials Science Department study basic, theoretical and applied aspects of materials, their utilization, and their electronic, physical, mechanical, and chemical properties in relation to their structure. 

The field of Condensed Matter Physics and Materials Science integrates the knowledge and tools of chemistry and physics with the principles of engineering to understand and optimize the behavior of materials, as well as to create new and improved materials to help fulfill the missions of the Department of Energy.

  1. MAR



    Condensed-Matter Physics & Materials Science Seminar

    "Spatial Resolution of Low-Loss EELS"

    Presented by R.F. Egerton, University of Alberta, Canada

    2 pm, Building 480 Conference Room

    Tuesday, March 20, 2018, 2:00 pm

    Hosted by: Yimei Zhu

    Recent-generation TEM/STEM instruments fitted with an electron monochromator provide an energy resolution down to 0.01 eV for electron energy-loss spectroscopy (EELS) and are themselves capable of achieving a spatial resolution approaching 0.1 nm. Besides offering the possibility of vibrational-mode EELS for examining chemical bonds, these instruments could be useful for mapping the electronic properties (e.g. band gap) of insulators and semiconductors. However, basic physics imposes a spatial resolution of few nm (or tens of nm) for energy loss below 10 eV, due to delocalization of the inelastic scattering. We will discuss what might be done to improve the spatial resolution, to make low-loss EELS competitive with other techniques.

Electron Spectroscopy

Explores the electronic structure and electrodynamics of topological insulators and strongly correlated electron systems, with particular attention to emergent phenomena, such as superconductivity and magnetism, using angle-resolved photoemission (ARPES) and optical spectroscopy.

Neutron Scattering

Studies the role of antiferromagnetism in high-temperature superconductors.  The interaction of charge carriers with magnetic moments is of critical importance but remains a challenge to understand. .

X-Ray Scattering

Carries out basic studies of the structural, electronic and magnetic properties of condensed matter systems using synchrotron-based x-ray scattering techniques. .

Condensed Matter Theory

Conducts basic research over a wide swath of theoretical physics, ranging from strongly correlated electrons to first principle electronic structure theory.  

Advanced Energy Materials

Studies both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies

Oxide Molecular Beam Epitaxy

Addresses key open questions in HTS physics such as the dimensionality of the HTS phenomenon, the spin and charge of free carriers, the nature of the superconducting transition, the role of charge stripes (if any) in the HTS state, the nature of the overdoped metallic state, and more.

Spectroscopic Imaging

Span a wide range of quantum matter systems, including superconductors, superfluids, supersolids, electronic liquid crystals, topological insulators superconductors & superfluids, heavy fermions, and spin liquids. Throughout, the focus is on development of innovative techniques and approaches to each problem.

Electron Microscopy and Nanostructure

Utilizes advanced electron microscopy techniques to study nanoscale structure and defects that determine the utility of functional materials, such as superconductors, multiferroics, and other energy related systems including thermoelectrics, photovoltaics, and batteries.

The Condensed Matter Physics and Materials Science Department is part of Brookhaven National Laboratory's Energy Sciences Directorate.