Method and Tool Development for Assessing Renewable Impacts on Probabilistic Contingency Analysis

Meng Yue (yuemeng@bnl.gov) Sustainable Energy Technologies Department November 13, 2019

EPRI Risk-Based Planning Industry Workshop

a passion for discovery

Project Purpose

- Problem statement:
 - Contingency analyses (CAs) are currently deterministic and only address uncertainties by using a limited number of scenarios.
 - Transforming grid possesses more stochasticity due to, e.g., higher penetrations of distributed energy resources (DERs), which is more difficult for existing deterministic contingency analysis (DCA) to handle.
 - Probabilistic methods are available; however, utilities are reluctant to abandon existing proven techniques due to various barriers such as data, tools, and culture.
- The proposed study intends to overcome these barriers and make it practical to perform probabilistic contingency analysis (PCA).

Achievements

- This study facilitates a PCA study by developing
 - Methods for <u>data poolability analysis</u> and <u>probabilistic</u> modeling and parameterization of renewable generation <u>outages</u>, especially for common mode outages (CMOs)
 - <u>An outage data repository</u> that better models population variability
 - An implementation of <u>well-being approach</u> that can facilitate decision-making process based on the PCA results
 - A <u>Python-driven PSS/E based tool with enhanced PCA</u> <u>features</u> that can be readily used by utilities

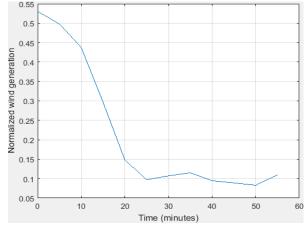
Technical Approach: Data Poolability

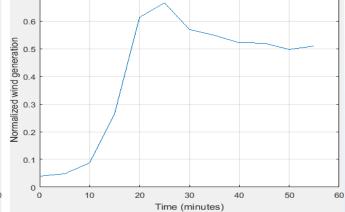
- Formal Statistical Testing for Data Poolability Issue
 - Raw data sources include NERC TADS, GADS (i.e., pc-GAR software), some Canadian data, and some other publicly available data
 - Data from different sources (e.g., different NERC regions) are usually lumped and averaged (i.e., arithmetic means) for PCA input
 - This study uses a formal statistical test process to determine whether there is a need to model the population variability of data
 - ✓ E.g., environmental impact or maintenance schedule.
 - Not all data sources are poolable

Outage Data Repository for Non-poolable Transmission Components (Lognormal Distributions)

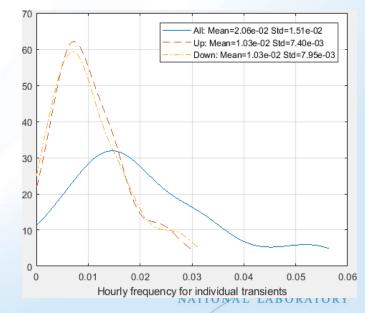
Components	Parameter	χ²(N-1)	μ	σ	Arithmetic Mean	Mean	Variance	5 th	95 th	Error
	S					Value		Percentile	Percentile	Factors
AC Circuit: 200– 299kV	fmt	682.8	-4.63	0.37	0.01	0.01	1.62E-5	0.005	0.018	1.84
	dmt	114,420. 4	3.27	0.86	41.51	37.88	1,548.35	6.43	107.32	4.09
	ft	810.8	-1.85	0.60	0.20	0.19	0.015	0.059	0.42	2.66
	dt	96,440	3.03	1.17	22.82	41.10	4,995.77	3	142.24	6.89
AC Circuit: 300-	fmt	922.6	-4.74	0.64	0.009	0.01	5.78E-5	0.003	0.025	2.85
399kV	dmt	39,390	3.04	1.12	45.90	39.06	3,804.74	3.32	131.56	6.30
	ft	839.3	-1.45	0.55	0.34	0.27	0.03	0.095	0.58	2.46
	dt	312,978	3.46	1.49	46.97	96.25	76,004.2	2.74	367.93	11.60
AC Circuit: 400-	fmt	77.1	-5.96	0.59	0.005	0.003	3.89E-6	0.00098	0.0068	2.64
599kV	dmt	27,341.6	1.53	1.91	28.09	28.7	30,818.8	0.2	107.21	23.15
	ft	207.4	-0.90	0.82	0.31	0.57	0.31	0.11	1.57	3.87
	dt	6,336.2	2.65	1.12	22.59	26.54	1,752.6	2.26	89.36	6.29
Transformer: 300–399kV	d	174,195	4.23	2.18	271.87	734.3	6.16E+7	1.9	2,464.02	36.01
Transformer:	f	81.5	-1.60	0.70	0.09	0.26	0.04	0.065	0.64	3.14
400–599kV	d	10,569.3	3.49	1.45	142.80	94.56	64,916.8	3.01	359.2	10.92
Fossil Fuel	f	8,655.9	1.74	0.21	6.25	5.83	1.46	4.08	8.00	1.40
Generator: 0–399MW	d	159,300	4.04	0.14	54.82	57.40	62.87	45.35	71.29	1.25
Fossil Fuel	f	4,326.8	2.35	0.18	10.18	10.63	3.77	7.76	14.08	1.35
Generator: 400–799MW	d	66,860	3.64	0.096	40.69	38.14	13.56	32.40	44.48	1.17
Gas/Jet Turbine:	f	11,892.9	1.27	0.35	4.14	3.77	1.80	2.01	6.27	1.77
0–99MW	d	1,778,08 4.2	4.53	0.50	78.94	104.48	3053.19	40.81	209.1	2.26
Gas/Jet Turbine:	f	961.3	1.33	0.37	4.42	4.04	2.35	2.07	6.91	1.83
100–199MW	d	43,616.0	4.03	0.41	46.56	61.23	698.09	28.49	110.95	1.97

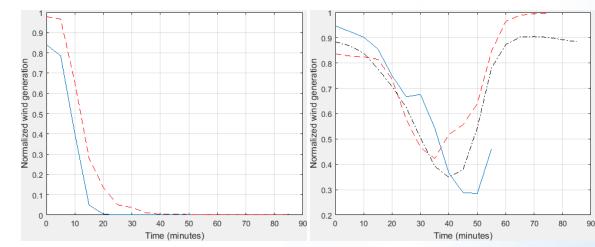
- o fmt: The frequency for single circuit outages per mile
- o *dmt*: The duration of single circuit outages
- *ft*: The frequency for terminal-caused single circuit outages.
- o *dt*: The duration for terminal caused single circuit outage.
- *f*: the outage frequency
- \circ *d* : the duration per outage.


Technical Approach: Renewable Outage Modes


- Modeling and Parameterization of Intermittency Induced Outages (IIOs)
 - Major differences between conventional generator and renewable outages.
 - Generation increase or decrease caused by fast ramping events should also be modeled as an outage mode
 - E.g., wind speed is lower than cut-in or higher than cutout speed
 - For each outage modes, there can be associated CMOs for different generation sites.

Modeling and Parameterization of IIOs


 Fast ramping events were extracted from utility wind generation data and modeled as IIOs


0.

- Empirical distribution of frequencies and durations of IIOs was fitted
 - Also, initial generation level prior to the ramping, the deviation of generation
- Distributions for both up and down transients can be considered the same and modeled using the same distribution

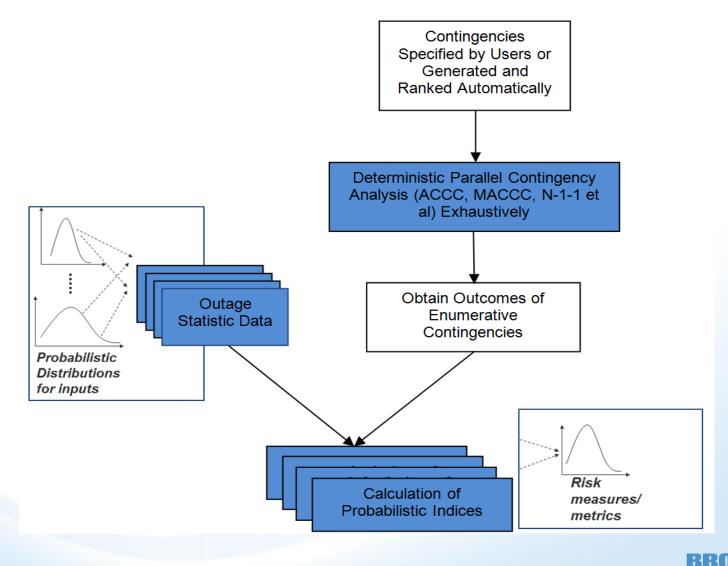
Modeling and Parameterization of CMOs

- Output of two wind sites may be highly correlated because they are very close to each other or located along the same wind path
- Need to extract concurrent ramping events of wind generation sites, especially those highly correlated

Example Double (Left) and Triple CMOs

Triple	Correlatio	Frequency	Deviation	Duration
Rampings	n			(Hours)
Up	0.8 – 0.1	0.0001	0.64	3.04
Down		N/A	0.67	0.57
Up	0.6 – 0.8	0.0002	0.75	1.78
Down		0.0001	0.75	0.26

Mean Values of Frequencies, Deviation, and Durations of Triple CMOs



Technical Approach: Simulation and Planning Criteria

- A Scheme for Enhancing PCA Capability of Existing Tools
 - Developed a generic scheme based on Monte Carlo simulation for distributions of different uncertainty parameters.
- Facilitation of Decision-making Process in Transmission Planning Using Probabilistic Reliability Metrics
 - Reviewed probabilistic planning criteria and discussed how to use the probabilistic and deterministic criteria together to facilitate making planning decision.
 - Investigated and implemented a well-being approach in the enhanced PCA tool.

Tool Implementation

Brookhaven Science Associates

NATIONAL LABORATORY

Case Study

- For a 23-bus example system:
 - Differences between system reliability indices calculated using the mean input (Case 1) and the Monte Carlo simulation (Case 2) can be significant
 - The Monte Carlo simulation is able to calculate the true mean values as well as distributions of reliability indices

	Case 1: Built-in	Case 2: Enhanced
	РСА	PCA
System Problem Frequency (per Year)	9.27	17.64
System Problem Duration (Hours)	47.1	34.15

For the WECC system:
Case 3: PSS/E built-in PCA and arithmetic mean + base case
Case 4: enhanced PCA + base case
Case 5: enhanced PCA + 10% wind
generation + IIOs and CMOs
Case 6: enhanced PCA + 10% wind
generation

	EENS (MW)				
Cases	Mean	Standard deviation			
3	81.66	N/A			
4	22.69	29.44			
5	8.8e-4	3.9e-3			
6	2.14e-3	8.68e-3			

Case Study (cont'd)

 Cases 5 vs. 6 (no IIOs): inclusion of renewable IIOs/CMOs will significantly increase the system problem frequencies but reduce the system problem durations

		Frequ	uency	Dura	Drobobility	
Problems	Cases	Mean	Standard deviation	Mean	Standard deviation	Probability (hours)
Overvoltage	4	655.3	227.8	4.4	2.6	2,712.9
je renege	5	993.1	389.7	2.8	1.8	2,572
	6	680.6	273.5	4.7	4.4	2,889.8
Undervoltage	4	72.3	27.0	4.2	4.8	277.4
	5	71.0	30.1	2.6	3.4	170.9
	6	75.8	33.2	3.5	6.1	227.9
System	4	663.0	230.9	4.4	2.7	2,741.5
	5	994.7	392.0	2.8	1.8	2,582.1
	6	681.1	274.2	4.7	4.4	2,901.2

Case Study (cont'd)

- Cases 5, 7, and 8 represents three different wind penetration levels: 10%, 30%, and 50%, respectively.
- As the wind penetration increases, system/voltage problem frequency increases while duration decreases.

		Penetration	Frequ	uency	Dura		
Problems	Case		Mean	Standard deviation	Mean	Standard deviation	Probability
	5	10%	993.1	371.2	2.8	1.8	2,572.0
Overvoltage	7	30%	1911.1	629.8	1.3	0.8	2,558.9
	8	50%	5,993.6	3,520.4	0.6	0.5	3,368.4
	5	10%	71.7	28.2	2.6	3.3	170.9
Undervoltage	7	30%	283.0	93.1	0.8	1.2	230.4
	8	50%	1,410.1	1,039.7	0.5	0.8	738.9
System	5	10%	994.7	372.9	2.8	1.8	2,582.1
	7	30%	1,937.7	627.2	1.6	1.2	3,195.3
	8	50%	6,479.9	3,518.2	0.5	0.4	3,291.8

Summary and Conclusions

- A reliability data repository including both raw outage data and statistics was developed.
- The potential poolability issue was identified and a solution was provided.
- The fast ramping events of renewable generation caused by intermittencies were identified and extracted as IIOs and CMOs and the probabilistic models were built and incorporated in the PCA framework.
- The developed models were integrated into add-on Python modules to drive and enhance the PCA capability of PSS/E.
- The well-being method was implemented in the enhanced PCA capabilities to facilitate the decision-making process.
- Case studies were performed to confirm the impacts of data poolability and IIOs and CMOs associated with renewable generation.

Future Effort

- Solar PV generation is another important source of renewable generation and will need to be included.
- A generic algorithm will be developed to extract fast ramping events from data of different temporal resolutions to support the PCA study.
- A new quantification scheme is needed and will be developed to more precisely calculate the probabilistic indices in the PCA.
 - The existing PCA software included in PSS/E calculates probabilistic indices of system problems approximately based on the rare event approximation.
- Reach out to more utilities for exercising and refining the enhanced PCA tool and demonstrating the capabilities of the tool.

Acknowledgements and Contacts

ERCOT (Drs. Sun Wook Kang, Julie Jin, and Julia Matevosjana)

 Provide data on renewable wind generation for use in the project and provide utility perspective on the use of probabilistic techniques.

Idaho Power Co. (Dr. Milorad Papic)

 Provide system data and utility perspective on the use of probabilistic techniques.

<u>Advanced Grid Modeling Program, Office of Electricity,</u> <u>DOE (Dr. Ghassemian, Alireza)</u>

Provided project funding.

