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IFEL InteractionIFEL Interaction
Undulator magnetic field to couple high power radiation 
with relativistic electrons
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IFEL characteristics: IFEL characteristics: 
a solid and reliable Advanced a solid and reliable Advanced 

AcceleratorAccelerator
• Laser accelerator: high gradients 
• Vacuum accelerator: good output beam quality
• Microbunching: control and manipulation of beams at the optical 

scale
• Efficient mechanism to transfer energy from laser to electrons
• State of the art requirements on laser and magnet technology
• Synchrotron losses at high energy (can be controlled by 

appropriate tapering of undulator)
• Gradient is energy dependent



IFEL ExperimentsIFEL Experiments
• IFELA: Wernick & Marshall 1992       (PRA, 46, 3566)

– First proof-of-principle IFEL experiment
– 5 MW at λ = 1.6 mm, gradient 0.7 MV/m, gain 0.2 MeV

• BNL-IFEL: Van Steenbergen, Gallardo et al. 1996 (PRL 77, 2690)
– Microbunching observed 1998     (PRL, 80 4418)
– 1-2 GW at λ = 10.6 µm, gradient 2.5 MV/m, gain 1 MeV

• MIFELA: Yoder, Marshall, Hirshfield  2001     (PRL, 86, 1765)
– All electrons accelerated, phase dependency of the acceleration
– 6 MW at λ = 10 cm, gradient 0.43 MV/m, gain 0.35 MeV

• STELLA: Kimura et al.  2001  (PRL, 86, 4041)
– First staging of two IFEL modules. 
– 0.1-0.5 GW at λ = 10.6 µm,  gain  up to 2 MeV

• STELLA 2 : Kimura et al. 2003 (PRL, 92, 054801)
– Monoenergetic laser acceleration (80 % of electrons accelerated, energy 

spread less than 0.5 % FWHM)
– ~30 GW,at λ = 10.6 µm, gain up to 17 % of initial beam energy



MotivationMotivation
• Proof-of-principle experiments successful
• Upgrade to significant gradient and energy gain

– Technical challenges: 
• very high power radiation
• strong undulator tapering

– Physics problems:
• include diffraction effects in the theory
• beyond validity of period-averaged classical 

FEL equation
• The Neptune Laboratory at UCLA has a high-power 

laser and a high-brightness electron beam



Experimental LayoutExperimental Layout

E- beam

Laser beam

Vacuum translation stages insert in 
the middle of the undulator a probe 
for spatio-temporal alignment

High energy spectrometer

IFEL vacuum box

Kurchatov strongly tapered 
undulator

Final focus large aperture 
quadrupole magnets

To streak camera 
diagnostics



Neptune IFEL Design ParametersNeptune IFEL Design Parameters
Laser Power 400 GW 

Laser wavelength 10.6 µm 

Laser beam size 
(w0) 340 µm 

Rayleigh range 3.5 cm 
 

 

Energy 14.5 MeV 

Energy spread (rms) 0.5 % 

Charge 300 pC 

Pulse length (rms) 4 ps 
Rms transverse 

Emittance 10 µ 

Rms beam size at the 
focus 150 µm 

 
 



ee--beam deliverybeam delivery

• New quadrupole magnets with 
larger (2.625”) aperture to avoid 
CO2 clipping
– Up to 7 T/m
– 9.1 cm effective length

The fringe field has a correction of 
~ 10% on the radius of curvature
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• Cherenkov cell
– Vary CO2 pressure to find 

threshold for Cherenkov
emission

• Calibration of 45 º two dipoles spectrometer
– Alignment errors
– Fringe field issue



KurchatovKurchatov IFEL UndulatorIFEL Undulator

• Unique “double tapered” 50 cm long undulator. 
– Final resonant energy 250 % bigger than 

initial 
• Hall Probe measurements. 
• Pulse Wire tuning.

 Initial Final 

Period 1.5 cm 5.0 cm
Field 

Amplitude 0.12 T 0.6 T 

Peak K 
parameter 0.2 2.8 

gap 12 mm 12 mm
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 Hall probe scan 



Diffraction Dominated InteractionDiffraction Dominated Interaction
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DiagnosticsDiagnostics
• Charge

– ICT in the folding box and 
Faraday Cup at the end of 
beamline.

• Energy spectrometer 
– Browne and Buechner geometry 

to have the energy spectrum over 
as wide a range of energies as 
possible.

– 1.5” pole gap for CO2 dump
– 11º edge angle for controlling 

vertical size of the beam
• Spatial and temporal 

synchronization
– Mid-of undulator graphite-coated 

phosphorous screen
– Ge crystal on the beam path for 

temporal synchronization using 
e-beam controlled transmission 
of CO2

Experimental 
2d field map of 
Browne-
Buechner poles
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Pulse propagation in a COPulse propagation in a CO22 amplifieramplifier
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Streak camera: Streak camera: ““Live from the bunkerLive from the bunker””
• Shot-to-shot measurements of the laser pulse length and the timing 

between two pulses necessary because of the complex dynamics of 
the final amplification of the CO2 pulse.

• Optical Kerr Effect to get  CO2 streaks
• E-beam reference pick off the photocathode drive laser

532 nm pulse

CO2 pulse
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Measurement of timingMeasurement of timing
between CO2 and e beambetween CO2 and e beam
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Optimization of IFEL outputOptimization of IFEL output
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Output energy vs. focus positionOutput energy vs. focus position
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SideSide--effects of effects of 
very high power laser beamsvery high power laser beams

• Increase in laser intensity could be accomplished by increase in
Rayleigh range, or increase of power in the pulse…

Single crystal NaCL windows
Single crystal NaCL lens

Copper mirrors



Single shot spectrum (laser on)Single shot spectrum (laser on)
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Single shot spectrumSingle shot spectrum
(laser polarization 90(laser polarization 90ºº off)off)
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Single shot spectrum (laser on)Single shot spectrum (laser on)
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Where are the energy peaks coming from?Where are the energy peaks coming from?
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Unfortunately we were not able to follow the red curve because of missing laser 
intensity, but if you slip out of the first resonance, the undulator is tapered enough 
that electrons can start to exchange energy with 10 µm photons through second 
harmonic coupling !!!
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Resonant conditions for energy transfer 
between particles and e.m. wave: 
Higher Harmonic IFEL



Higher Harmonic IFEL theoryHigher Harmonic IFEL theory

( )( ) sin (1 )
2

n
l w

n

JJ K KkK k z n kz t
z
γ ω ϕ

γ
∂

= ⋅ ⋅ + + − +
∂ ∑

( ) ( ) ( )( )2 2 2( ) ( ) ( ) ( )n m m n m n
m

JJ K J K J K J Kξ σ σ
∞

+ + +
=−∞

= ⋅ +∑
2

2
( )

4 1
2

KK
K

ξ =
 

+ 
 

( )
w

KK
k w

σ
γ

=where 

0 1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fundamental
2nd harmonic
3rd harmonic

Coupling coefficients for harmonics

K undulator

JJ
 fa

ct
or

The even harmonics are coupled 
through the diffraction angle     

In the limit σ(Κ)→0 we found the known 
result for odd harmonics

Higher Harmonic IFEL gives a lot of Higher Harmonic IFEL gives a lot of 
flexibility in flexibility in undulatorundulator design !!!design !!!



3d simulation3d simulation
• Energy gain is in the first section of undulator. (20 MeV in 25 cm !! )
• Higher Harmonic IFEL in the second section



Summary & ConclusionSummary & Conclusion

• IFEL Advanced Accelerator at the Neptune 
Laboratory
– > 20 MeV energy gain  ( + 150 % ) !!
– trapped up to 10 pC in accelerating buckets !
– accelerating gradient ~70 MeV/m !

• First experimental study of Strong Tapering & 
Diffraction Effects in IFELs

• Observation of Harmonic IFEL interaction in second 
section of undulator
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