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What Makes a Concept Exotic?
• Unusual materials:

Cliché: 

1. Dielectrics and metals are the only choices for 
structure-based accelerators  

2. Plasma must have density between 1016 – 1019 cm-3

• Unusual drivers:
Cliché:

1. Beatwave must be an intensity-modulated laser beam
tuned to plasma wave resonance

• Unusual combinations:
Cliché:

1. Lasers + plasmas, microwaves + dielectrics & metals
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List of Exotic Concepts

• Far-Field Vacuum and Almost-Vacuum Acceleration:

1. Inverse Cherenkov Accelerator

• Exotic Structures

1. Inverse Smith-Purcell and Open-Sided Dielectric 
Accelerators

2. Photonic Bandgap (PBG) Accelerators

• Exotic Plasma Concepts

1. Innovations in beatwave: detuned, auto-resonant, bi-
stable, micro-bunched beam driven

2. UIT ! millimeter-wave plasma accelerator
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Before building an advanced accelerator, 
choose your materials carefully!

Lawson-Woodward-Palmer theorem 
requires boundaries, high intensities, 
gases, or magnetic fields

Vacuum

Pulsed heating, breakdown, difficulties 
with miniaturization

“Hard” materials (metals, 
dielectrics, semiconductors)

Challenging to excite plasma waves, 
inject electrons into a short wavelength 
bucket 

Plasma
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Limitations of vacuum acceleration
•Linear in electric field acceleration in vacuum is impossible 
(Lawson-Woodward-Palmer’s theorem)
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Linear Acceleration: Stopping a Photon

•Can “stop” a photon in a medium ! Inverse Cherenkov Accelerator
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Any acceleration technique is the inverse of a radiation process !
radially polarized beam matches the Cherenkov emission cone 

•Can accelerate near boundaries: Examples of Inverse Smith-
Purcell, Surface Wave, and Photonic Bandgap Accelerators
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Inverse Smith-Purcell Accelerator
incident wave reflected wave
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Experimental accomplishments: 10 µm radiation from 45 
MeV beam at BNL (Fernow ’97)
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Evanescent wave has a 
sub-relativistic phase 
velocity ! suitable 
for acceleration

•Convenient to excite (open structure)

•Metal or high-ε dielectric gratings

•Non-resonant structure (Eacc ~ Einc)

•Strong variation of Ez with x ! small εn
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Exotic Materials for  ISPA
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IC enhanced by 
using materials 
with ε < 0 in the 
desired frequency 
rangeS-P Radiation produced totally by the image charge ! enhance 

the IC to enhance radiation ! enhance E-field at the charge

•For RF/microwaves: thin-
wire array mimics plasma: 

•For 10.6 µm radiation use 
naturally-occuring SiC:
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Micro-machined SiC
ablated by the 266-
nm VUV laser , 60 
pulses F=1.1 J/cm2
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Limitations of open planar structures
In-plane TM wave,  ky = 0

x ∆x

z

2222 /   and   ckkx
yyxz

yzeHHE ω−+−∝∂∝

•In-plane TM waves with kz ≈ ω/c do not deflect the beam: Ex=Hy

•In-plane TM waves with kz = ω/v are de-localized: ∆x = λγβ/2π

•They are almost transverse ! can’t accelerate relativistic particles

For any point above grating:

•Finite Ez ! evanescence ! oblique incidence ky ≠0

•Finite  ! finite Hx ! deflection force parallel to the grooves

•Synchrotron losses for high-γ beams ! suitable as an injector only
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From open to open-sided structures

Goals:
•X-independent (in-plane) luminous 
wakes do not deflect the beam

•Enable x-dependent (deflecting) 
wakes to leak out ! open-sided 
structure

•Increase shunt impedance by 
maximizing Ez/Ey

•Reduce or eliminate metallic 
components ! lossy at high 
frequency

•Reduce Ey at the metal surface

Hill et.al., 2001

Rosenzweig et.al., 1995

beam-driven

side-coupled
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2-D photonic bandgap accelerator: reversed fiber

Advantages of PBGs:

•Fundamental mode confined in vacuum through 
Bragg scattering by PC

•Can operate a defect mode with a frequency in the 
bandgap ! lateral confinement of the fundamental

•Deleterious wakes will be outside of bandgap ! not 
confined

E. Smirnova et. al. 
(MIT), metallic photonic 
fiber, 17 GHz

B. Cowan (SLAC),
open-sided structure

E. Lin (SLAC), 
photonic fiber



Planar surface-wave accelerator 

x

z

•No metal: confinement  
by ε < 0 material (SiC)

•Supports ω = kc mode !
can accelerate relativistic 
particles

•Near field (small gap) !
attractive ratio Ez/Ex

•Acceleration by surface 
phonon polaritons (SPP)

SiC/vacuum SPP’s are excitable 
by a CO2 laser 

SiC  ε < 0

SiC  ε < 0

3 µm

Coupling problems: (a) how do you couple 10.6 µm 
radiation into a 3 µm hole??  (b) SPP’s group velocity is 
very small ! how will they get to the other end??
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Si

SiC

3 µm

16 µm

2 µm

Incident CO2 laser

Side-coupled surface wave accelerator

800 µm
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Novelties in Plasma Beatwave Acceleration

• Detuned (driven) beatwave (UCLA)
1. Less severe requirements on plasma homogeneity: plasma 

wave frequency determined by laser frequency detuning

2. Advantageous for phase-locked injection

• Autoresonant beatwave excitation (UC Berkeley)
1. Accesses plasma wave amplitudes beyond linear 

wavebreaking by slowly chirping the laser frequency

2. Low-intensity very long laser pulses are used 

• Relativistic bi-stability (UT-Austin)
1. Achieves plasma waves close to wavebreaking using long 

pulses of above-threshold intensity

2. Nonlinear “clean-up” of plasma wakes
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Non-resonant Excitation of RPW with Constant Phase Velocity
(C.V. Filip et al, Phys Rev E 69, 026404 (2004))

Phase-locking of externally injected electrons into the accelerating 
field of the plasma wave requires constant phase velocity.
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ON-RESONANCE phase velocity & 
amplitude of the RPW are sensitive to 

density ! energy spread of the e-beam. 

OFF-RESONANCE pump pulse excites 
a “forced” oscillation (ωplasma»∆ωbeatwave) 
! phase & amplitude “locked” by laser



Robust Autoresonant Excitation in PBWA 

Rosenbluth-Liu Relativistic Detuning Limit: 
as plasma wave grows, its natural frequency 
drops, and the beatwave is out of resonance
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Beatwave Generation of Plasma 
Waves Using Relativistic Bi-Stability
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Beatwave strength a = (e/m)2E1E2/2ω1ω2 
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Laser pulse shape, ωp τL = 150
Critical strength

Long detuned beatwave pulse with a > acrit of duration T>>1/|ω – ωp| leaves 
behind a strong plasma wake ! only because of relativistic effects!
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Microbunched beam driven beatwave  
Instead of modulating laser intensity, use inverse FEL to 
micro-bunch an electron beam at the plasma wavelength 

Modulated e-beam driven accelerator/injector
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Microwaves and Plasmas: Unusual Match

• Common pairings: microwaves ! dielectrics & metals,   
short-pulse lasers ! plasmas 

• Trapping limit: Ez = 10 MeV/m x f[GHz]
• For frequencies above 100 GHz fabricating 

conventional structures is hard ! sub-mm features
• In plasma frequencies are determined by plasma density:        

λ = 3mm ! 1014 cm-3

Challenge: Converting high power transversely polarized 
microwaves into longitudinally polarized plasma wave

Usual ponderomotive coupling won’t work:
(1) plasma too dense ω ∼ ωp (2) pulses too long ωpτ >> 1

Solution: Use magnetic field for mode conversion
Extra benefit: strong compression of EM waves due to vg << c 
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Undulator + Microwaves = Plasma Wave
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Axial + undulator B-fields create a “slow wave” band for ω = ωp = Ω0
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phase velocity ! possibility of 
ion acceleration

Length of plasma, cm/2π
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PIC simulation of UIT: weak undulator

Parameters:Accelerating 
field EZ

Transverse 
field EX
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Note 10-fold compression of 
electric field EZ/EX

Linear prediction confirmed by PIC: weaker undulator
results in higher energy compression ratio and higher 
accelerating field. 

Is linear theory accurate? 
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Decreasing undulator field ! increasing 
accelerating gradient? 

a1Bc/Bw

E z
(V

/m
)

Bc=1 T

Nonlinear saturation for 
small Bw ! evidence of 
relativistic mass increase?

Ref.: Hur, Wurtele, and Shvets, Phys.Plasmas 2003
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Conclusions and Acknowledgements

As our field matures, there is still room for innovation in 
all AAC areas: drivers, materials, combinations thereof. 

•E. Colby (SLAC)

•S. Tochitsky (UCLA)

•M.-S.Hur, R. Lundberg, J.S. Wurtele (UCB)

•E. Smirnova, M. Shapiro (MIT)

•M. Tushentsov (UT-Austin)

•J. Power, W. Gai (ANL)

Advanced Technology Program of HEP office of DOE



Direct laser acceleration in capillary channel

•Idea: use the free electrons contained in metal walls to excite a 
surface wave (Steinhauer et.al.) Metal wall enables confinement.

•Problems:

-Oversized channel (w>>λ) required for luminous 
propagation ! small ratio Ez/E⊥f

-Large E⊥ may lead to heating of metallic wall

Radially polarized laser beam 
accelerates electrons
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