Exotic Acceleration Concepts: from vacuum to structures to plasmas

Gennady Shvets, The University of Texas at Austin

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
What Makes a Concept Exotic?

- **Unusual materials:**
 Cliché:
 1. Dielectrics and metals are the only choices for structure-based accelerators
 2. Plasma must have density between $10^{16} - 10^{19}$ cm$^{-3}$

- **Unusual drivers:**
 Cliché:
 1. Beatwave must be an intensity-modulated laser beam tuned to plasma wave resonance

- **Unusual combinations:**
 Cliché:
 1. Lasers + plasmas, microwaves + dielectrics & metals
List of Exotic Concepts

• Far-Field Vacuum and Almost-Vacuum Acceleration:
 1. Inverse Cherenkov Accelerator

• Exotic Structures
 1. Inverse Smith-Purcell and Open-Sided Dielectric Accelerators
 2. Photonic Bandgap (PBG) Accelerators

• Exotic Plasma Concepts
 1. Innovations in beatwave: detuned, auto-resonant, bi-stable, micro-bunched beam driven
 2. UIT \(\rightarrow \) millimeter-wave plasma accelerator

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Before building an advanced accelerator, choose your materials carefully!

- **Vacuum**: Lawson-Woodward-Palmer theorem requires boundaries, high intensities, gases, or magnetic fields.
- **“Hard” materials (metals, dielectrics, semiconductors)**: Pulsed heating, breakdown, difficulties with miniaturization.
- **Plasma**: Challenging to excite plasma waves, inject electrons into a short wavelength bucket.

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Limitations of vacuum acceleration

• Linear in electric field acceleration in vacuum is impossible (Lawson-Woodward-Palmer’s theorem)

\[\vec{p}_1 - \vec{p}_0 = \omega \]

Cannot stop a photon in vacuum!

• Non-linear (ponderomotive) acceleration, a.k.a. Inverse Compton Scattering is possible \(\rightarrow \) injector applications

\[\frac{dE}{dz} = \frac{30 \text{ GeV}}{\gamma} cm \left(\frac{P}{3 \times 10^{18} \text{ W/cm}^2} \right) \]

Useless for collider but could be used for injector applications

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Linear Acceleration: Stopping a Photon

• Can “stop” a photon in a medium → Inverse Cherenkov Accelerator

\[\omega_{\text{rest}} = \gamma_{\text{frame}}(\omega - \mathbf{k} \cdot \mathbf{v}_{\text{frame}}) = 0 \]

\[|\mathbf{k}| = n_{\text{gas}} \frac{\omega}{c} \]

Any acceleration technique is the inverse of a radiation process → radially polarized beam matches the Cherenkov emission cone

• Can accelerate near boundaries: Examples of Inverse Smith-Purcell, Surface Wave, and Photonic Bandgap Accelerators

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Inverse Smith-Purcell Accelerator

incident wave evanescent wave reflected wave

$\mathbf{q} \quad \mathbf{v} \quad d = 2\pi/k_u$

Image $q' = -\frac{\varepsilon - 1}{\varepsilon + 1} q$

- Convenient to excite (open structure)
- Metal or high-ε dielectric gratings
- Non-resonant structure ($E_{\text{acc}} \sim E_{\text{inc}}$)
- Strong variation of E_z with $x \to$ small ε_n

Evanescent wave has a sub-relativistic phase velocity \to suitable for acceleration

$$v_{\text{ev}} = \frac{\omega}{\omega/c \cos(\theta) + k_u} = v$$

Experimental accomplishments: 10 μm radiation from 45 MeV beam at BNL (Fernow '97)

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Exotic Materials for ISPA

\[q' = -\frac{\varepsilon - 1}{\varepsilon + 1} q \]

S-P Radiation produced totally by the image charge \(\rightarrow \) enhance the IC to enhance radiation \(\rightarrow \) enhance E-field at the charge

For RF/microwaves: thin-wire array mimics plasma:

\[\varepsilon = 1 - \frac{\omega_p^2}{\omega^2} \]

\[\omega_p^2 \approx \frac{16c^2}{d^2 \log(d^2/8r_0^2)} \]

• For 10.6 \(\mu \)m radiation use naturally-occurring SiC:

\[\varepsilon = \varepsilon(\infty) \frac{\omega_i^2 - \omega^2}{\omega_i^2 - \omega_f^2} \]

Micro-machined SiC ablated by the 266-nm VUV laser, 60 pulses F=1.1 J/cm²

IC enhanced by using materials with \(\varepsilon < 0 \) in the desired frequency range

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Limitations of open planar structures

- In-plane TM waves with \(k_z \approx \omega/c \) do not deflect the beam: \(E_x = H_y \)
- In-plane TM waves with \(k_z = \omega/v \) are de-localized: \(\Delta x = \lambda \gamma \beta/2\pi \)
- They are almost transverse \(\Rightarrow \) can’t accelerate relativistic particles

For any point above grating:
\[
E_z \propto \partial_x H_y \quad \text{and} \quad H_y \propto e^{-x\sqrt{k_z^2 + k_y^2 - \omega^2/c^2}}
\]
- Finite \(E_z \) \(\Rightarrow \) evanescence \(\Rightarrow \) oblique incidence \(k_y \neq 0 \)
- Finite \(\Rightarrow \) finite \(H_x \) \(\Rightarrow \) deflection force parallel to the grooves
- Synchrotron losses for high-\(\gamma \) beams \(\Rightarrow \) suitable as an injector only

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
From open to open-sided structures

Goals:

- X-independent (in-plane) luminous wakes do not deflect the beam
- Enable x-dependent (deflecting) wakes to leak out → open-sided structure
- Increase shunt impedance by maximizing E_z/E_y
- Reduce or eliminate metallic components → lossy at high frequency
- Reduce E_y at the metal surface

Hill et.al., 2001

Rosenzweig et.al., 1995
2-D photonic bandgap accelerator: reversed fiber

Advantages of PBGs:

- Fundamental mode confined in vacuum through Bragg scattering by PC
- Can operate a defect mode with a frequency in the bandgap \rightarrow lateral confinement of the fundamental
- Deleterious wakes will be outside of bandgap \rightarrow not confined

E. Smirnova et. al. (MIT), metallic photonic fiber, 17 GHz

B. Cowan (SLAC), open-sided structure

E. Lin (SLAC), photonic fiber
Planar surface-wave accelerator

SiC ε < 0

3 µm

SiC ε < 0

SiC/vacuum SPP’s are excitable by a CO₂ laser

• No metal: confinement by ε < 0 material (SiC)
• Supports ω = kc mode \(\Rightarrow \) can accelerate relativistic particles
• Near field (small gap) \(\Rightarrow \) attractive ratio \(E_z/E_x \)
• Acceleration by surface phonon polaritons (SPP)

Coupling problems: (a) how do you couple 10.6 µm radiation into a 3 µm hole?? (b) SPP’s group velocity is very small \(\Rightarrow \) how will they get to the other end??

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Side-coupled surface wave accelerator

Incident CO₂ laser

SiC

Si

16 µm

2 µm

3 µm

800 µm

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Novelties in Plasma Beatwave Acceleration

• Detuned (driven) beatwave (UCLA)
 1. Less severe requirements on plasma homogeneity: plasma wave frequency determined by laser frequency detuning
 2. Advantageous for phase-locked injection

• Autoresonant beatwave excitation (UC Berkeley)
 1. Accesses plasma wave amplitudes beyond linear wavebreaking by slowly chirping the laser frequency
 2. Low-intensity very long laser pulses are used

• Relativistic bi-stability (UT-Austin)
 1. Achieves plasma waves close to wavebreaking using long pulses of above-threshold intensity
 2. Nonlinear “clean-up” of plasma wakes

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Phase-locking of externally injected electrons into the accelerating field of the plasma wave requires constant phase velocity.

\[
\frac{eE}{mc\Delta\omega} = \frac{\omega_p^2 a_1 a_2}{\omega_p^2 - \Delta\omega^2} \sin \Delta\omega(t - z/c) \approx a_1 a_2 \sin \Delta\omega(t - z/c)
\]

ON-RESONANCE phase velocity & amplitude of the RPW are sensitive to density \(\rightarrow\) energy spread of the e-beam.

OFF-RESONANCE pump pulse excites a “forced” oscillation \((\omega_{\text{plasma}} \gg \Delta\omega_{\text{beatwave}})\) \(\rightarrow\) phase & amplitude “locked” by laser
Robust Autoresonant Excitation in PBWA

Rosenbluth-Liu Relativistic Detuning Limit:
as plasma wave grows, its natural frequency
drops, and the beatwave is out of resonance

\[\frac{E_{RL}}{E_{WB}} = \left(\frac{16a_1a_2}{3} \right)^{1/3} \]

Relativistic equation for electrostatic potential
\[\phi = \frac{e\Phi}{mc^2} \] of an ultra-fast plasma wave

Laser beatwave:
\[a^2 = \bar{a}^2 + \varepsilon \sin \psi(\zeta), \quad \text{where} \quad \psi(\zeta) = \int d\zeta \omega(\zeta) \]

chirped detuning

\[\omega(\zeta) = \omega_p (1 - \alpha \zeta), \quad \text{where} \quad \zeta = \omega_p \left(t - z/c \right) \]

\[\alpha < 0.15 \omega_p \left(\frac{\omega_p^2 E_1 E_2}{\omega_1 \omega_2 E_0^2} \right)^{4/3} \]

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Beatwave Generation of Plasma Waves Using Relativistic Bi-Stability

Beatwave strength $a = (e/m)^2 E_1 E_2 / 2 \omega_1 \omega_2$

Critical strength

$$a_{crit} = \frac{4\sqrt{2}}{9} \left(1 - \frac{\omega^2}{\omega_p^2} \right)^{3/2}$$

Long detuned beatwave pulse with $a > a_{crit}$ of duration $T>>1/|\omega - \omega_p|$ leaves behind a strong plasma wake \Rightarrow only because of relativistic effects!

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Microbunched beam driven beatwave

Instead of modulating laser intensity, use inverse FEL to micro-bunch an electron beam at the plasma wavelength

Modulated e-beam driven accelerator/injector

Energy into wake

Energy into driver

Front bunches excite the wake, middle bunches accelerate

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Microwaves and Plasmas: Unusual Match

- **Common pairings:** microwaves → dielectrics & metals, short-pulse lasers → plasmas
- **Trapping limit:** \(E_z = 10 \text{ MeV/m} \times f[\text{GHz}] \)
- **For frequencies above 100 GHz** fabricating conventional structures is hard → sub-mm features
- **In plasma frequencies are determined by plasma density:**
 \[\lambda = 3\text{mm} \rightarrow 10^{14} \text{ cm}^{-3} \]

Challenge: Converting high power transversely polarized microwaves into longitudinally polarized plasma wave

Usual ponderomotive coupling won’t work:
- (1) plasma too dense \(\omega \sim \omega_p \)
- (2) pulses too long \(\omega_p \tau \gg 1 \)

Solution: Use magnetic field for mode conversion

Extra benefit: strong compression of EM waves due to \(v_g \ll c \)

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Undulator + Microwaves = Plasma Wave

Axial + undulator B-fields create a “slow wave” band for \(\omega = \omega_p = \Omega_0 \)

\[
\begin{align*}
B, T_1
\end{align*}
\]

Length of plasma, cm/2\(\pi\)

\[
\frac{n_p \text{ [cm}^{-3}\text{]}}{10^{13}} = 2a_1 \frac{B_0^2}{B_u} \Rightarrow
\]

for \(a_1 = 0.02\) \(E_z = 10\) MeV/m

\[
v_\phi = c / (1 - \lambda_1 / \lambda_u) \rightarrow \text{control of phase velocity} \rightarrow \text{possibility of ion acceleration}
\]

Advanced Accelarator Concepts Workshop, June 24, 2004, Stony Brook, NY
PIC simulation of UIT: weak undulator

Parameters:

\[
\frac{\omega}{\Omega_0} = 1, \quad \frac{k_u c}{\omega} = 1.6 \quad \frac{eB_u}{mc\omega} = \frac{1}{50}
\]

\[\Rightarrow \quad \frac{\text{Group Velocity}}{\text{Light Speed}} = \frac{1}{50}\]

Note 10-fold compression of electric field \(E_Z/E_X\)

Linear prediction confirmed by PIC: weaker undulator results in higher energy compression ratio and higher accelerating field.

Is linear theory accurate?

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Decreasing undulator field \rightarrow increasing accelerating gradient?

$B_c=1$ T

Nonlinear saturation for small B_w \rightarrow evidence of relativistic mass increase?

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY
Conclusions and Acknowledgements

As our field matures, there is still room for innovation in all AAC areas: drivers, materials, combinations thereof.

• E. Colby (SLAC)
• S. Tochitsky (UCLA)
• M.-S. Hur, R. Lundberg, J.S. Wurtele (UCB)
• E. Smirnova, M. Shapiro (MIT)
• M. Tushentsov (UT-Austin)
• J. Power, W. Gai (ANL)

Advanced Technology Program of HEP office of DOE
Direct laser acceleration in capillary channel

- **Idea**: use the free electrons contained in metal walls to excite a surface wave (Steinhauer et.al.) Metal wall enables confinement.

- **Problems**:
 - Oversized channel ($w \gg \lambda$) required for luminous propagation \rightarrow small ratio E_z/E_{\perp}
 - Large E_{\perp} may lead to heating of metallic wall

Radially polarized laser beam accelerates electrons

Advanced Accelerator Concepts Workshop, June 24, 2004, Stony Brook, NY