June 25, 2004 Advanced Accelerator Concepts Workshop 2004

# Femtosecond Beam Sources and Applications

Mitsuru Uesaka University of Tokyo, Nuclear Engineering Research Laboratory

### **Femtosecond Beam Science**



Mitsuru Uesaka(Eds.) University of Tokyo

#### **Chapter 1 Introduction**

- Chapter 2 Femtosecond Beam Generation 2.1 Femtosecond TW Laser 2.2 Linear Accelerator 2.3 Synchrotron 2.4 Laser Plasma Acceleration 2.5 Thomson/Compton Scattering 2.6 Slicing 2.7 X-FEL
- **2.8 Energy Recovery Linac**

Chapter 3 Diagnosis and Synchronization 3.1 Pulse Shape Diagnosis 3.2 Synchronization

Chapter 4 Application
4.1 Radiation Chemistry
4.2 Time-resolved X-ray Diffraction
4.3 Protein Dynamics
4.4 Probing Molecules and Clusters in Intense Laser Feilds
4.5 Molecular Dynamics Simulation

Imperial College Press/World Scientific

#### **Short Bunch Generation and Downsizing of Accelerator**



### Femtosecond Beam Generation at Laser, Linac and Synchrotron



Laser

**CPA**(Chirped Pulse Compression)

Linac

Magnetic Pulse Compression (relativistic, control of R<sub>56</sub>)

Velocity Bunching(nonrelativistic)

FEL, IFEL(multibunches)

**Thomson/Compton Scattering** 

#### Synchrotron

 $z=R_{56}\delta$ ,  $R_{56} \rightarrow 0$  (isochronous)

Electron-laser Interaction in Undulator Field FEL, IFEL Slicing Strong Longitudinal Focusing

Strong Longitudinal Focusing

### **Ultrashort Beam Generation by Laser Plasma Acceleration**



Electron

Gas jet

Wake field Acceleration

### Positron

Irradiation of Na film by

**Accelerated Electrons** 

Ion

**Film Target** 

Neutron

**Deutrium Cluster Jet** 

#### Tens Femtosecond or Quasi-Monochromatic Electron Single Bunch by Laser Plasma Cathode (RAL, LBNL, LOA, AIST, U.Tokyo at AAC2004)



#### **Femtosecond Electron Bunch Diagnostics**



Theory of Electron Bunch Shape Evaluation by Coherent/Incoherent Radiation

T.Watanabe(BNL-ATF/U,Tokyo)

Radiation electric field From electron pulse

$$E(\omega) = e(\omega) \sum_{k=1}^{N} \exp(i\omega t_k)$$

e(w) radiation electric field  $t_k$  probability variable N number of electron from 1 electron

1<sup>st</sup> order spectrum correlation function

1

$$\langle E(\omega)E^*(\omega')\rangle = e(\omega)e^*(\omega')\langle \sum_{k=1}^N \sum_{l=1}^N \exp(i\omega t_k - i\omega' t_l)\rangle$$
 shot average

$$= e(\omega)e^{*}(\omega')\left\{\underline{NF(\Delta\omega)} + \underline{N(N-1)F(\omega)F^{*}(\omega')}\right\}, \Delta\omega = \omega - \omega'$$
  
Incoherent factor Coherent factor

$$\left( \left\langle \exp(iw t_k) \right\rangle = \bigotimes_{=}^{*} \underline{F(t_k)} \exp(iw t_k) dt_k = F(w), |F(w)|^2 = \underline{f(w)} \right)$$
  
Pulse distribution function Bunch form factor

$$= |e(\omega)|^{2} N\{1 + (N-1)f(\omega)\}$$
 Coherent radiation  $(\omega = \omega')$   
$$= e(\omega)e^{*}(\omega')NF(\Delta\omega)$$
 Incoherent radiation

Radiation electric field 
$$E(\omega) = e(\omega) \sum_{k=1}^{N} \exp(i\omega t_k)$$
  
From electron pulse  $e(\omega)$  radiation electric field  $t_k$  probability variable  $N$  number of electron  
from 1 electron  
**2nd order spectrum correlation function**  
 $\langle |E(\omega)|^2 |E(\omega')|^2 \rangle = e(\omega)e^*(\omega)e(\omega')e^*(\omega') \langle \sum_{k=1}^{N} \sum_{l=1}^{N} \sum_{m=1}^{N} \exp[i\omega(t_k - t_l) + i\omega'(t_m - t_n)] \rangle$   
 $= |e(\omega)|^2 |e(\omega')|^2 N^2 (1 + |F(\Delta \omega)|^2)$   
 $= |e(\omega)|^2 |e(\omega')|^2 N^2 (1 + f(\Delta \omega))$ 

Example spectrum correlation by P.Catravas

Bunch form factor

$$C_{meas} = \frac{\langle I(\omega_i)I(\omega_{i+n})\rangle}{\langle I(\omega_i)^2 \rangle}$$
$$= \frac{\langle |E(\omega)|^2 |E(\omega')|^2 \rangle}{\langle |E(\omega)|^4 \rangle}$$
$$C_{meas} = \frac{I_0(\omega')\{1 + f(\Delta \omega)\}}{2I_0(\omega)}$$

\* P. Catravas, et al., Phys. Rev. Lett. 82 (1999) 5261.

### Bunch Length Measurement by Fluctuation Method(ANL)



```
Example of the single-shot spectrum
```

Autocorrelation of the spectrum Horizontal axis : pixel size of the CCD  $(1pix=2.4 \times 10^{11} \text{ rad/s})$ 

Measure the spectrum of the incoherent radiation  $\downarrow$ The width of the spike is corresponds to the pulse width  $\sigma_t \sim 1/2\delta\omega$   $\downarrow$ Pulse width ~ 4.5 ps .FWHM.

Sajaev et al., EPAC2000

# Femtosecond electron bunch measurement by fluctuation method at DESY-TESLA-TTL

#### Saldin, Schneidmiller and Yurkov.DESY)



of the radiation pulse along the undulator

### Past / Present /Future of Streak Measurement

•Space charge effects limit the time resolution.





Low Accel. Voltage High Accel. Voltage B.E.Carlsten et al., Micro bunches workshop (1995) p21



C4575-01 (Hamamatsu Photonics) 10 kV/1.6mm *Resolution:* ~ ps Sweep velocity on the Phosphor 28mm/0.1ns (2.8×10<sup>8</sup> m/s)



50 fs resoluted Camera and Attosecond Streak Camera (Hamamatsu Photonics/ U. Tokyo)





A.V. Aleksandrov et al. RSI 70 (1999) 2622. P.Bak et al., Laser Part. Beam 19(2001) 105.

### Methodology and Resolution of Pulse Length Measurement



### Size of Measurement System



# Applications

Single Shot Imaging

In-situ observation at any time



-2fs2fs5f10fs20fs50fsSimulation of single shot imaging of protein by X-FEL

### Intense Beam by Large System Irreversible process



Laser Ablation Process by 7.5 MeV Laser Plasma Ions M. Borghesi, et al., Phys. Rev. Lett. 88, 135002 (2002).

Pump-and-probe analysis

Reversible process

Available by Beam Sources of Moderate Intensity and Size

#### **Femtosecond Pump – and-Probe Analysis**



# Synchronization of Laser, Linac and Synchrotron

Only Laser : Complete synchronization with beam splitter

Laser vs Linac : 300fs (a few min,), 1ps (a few hour))

Laser vs synchrotron : a few ps

#### **Radiation Chemistry**

Liquids : ps order & fs order (under way)

Biological effect : µs order (not yet)

#### **Dynamics of Protein**

- fs : laser (under way)
- μs : SR (under way)

ps - ns : not yet

#### **Dynamics of Phonon**

>50ps : Laser-plasma Cu Kα X-ray (done)

<50ps : not yet

# **Chemical Reaction of Water**

U.Tokyo, Osaka U., ANL, BNL, U.Pari-Sud, Waseda U, etc.



# **Radiation Chemistry**



Workshop on Ultrafast Accelerators for Radiation Chemistry in BNL on June 26, 27 chaired by Dr.J.Wishart

# 4D Microscopy of GaAs Lattice Dynamics

Kinoshita, K. et al., Laser Part. Beams 19(2001)



Related Refs. Rischel, C. et al., Nature(1997) Rose-Petrick, C. et al., Nature(1999) Hironaka, Y. et al., Jpn.J.Appl.Phys.(1999)



Membrane protein exists in the cell of extremely halophilic bacteria. It has a function of a proton pump. The bacteria live using pumped charge.

Example; make up ATP(Adenosine TriPhosphate)



### **Synchronization**



## **Timing Jitter and Drift**



The phase-lock of higher harmonics suppresses the timing jitter, but the timing drift was remained.

## **Stable Synchronization**

### ~ Result of transport line improvement~



### Laser Seeded Staged Accelerator



### Big Advantage of Laser Plasma Accelerator for Pump-and-probe analysis

Synchronization is perfectly passive without any electronics.

No timing jitter and drift between laser and secondary beam.

Femtosecond time-resolved analysis is surely available .after the bean quality and stability are upgraded.



# Summary of Synchronization

1. Laser vs Accelerator Synchronization System via Electronics

Picoseconds time-resolution

2. Laser Seeded Staged Accelerator

Femtoseconds time-resolution

Available for multibunches

3. Laser Plasma Accelerator

Beam Splitter enables even Attoseconds time-resolution After Stable and reliable beam generation and diagnosis are established

# Summary

- 1. Advanced Accelerator is Femtosecond Beam Source.
- 2. Its application is to visualize Ultrafast Microscopic Dynamics.
- 3. Laser-Accelerator synchronization systems are already applicable for Picosecond Time-resolved Analysis.
- 4. Laser Plasma Accelerator has a big potential to realize Femtosecond Beam Pump-and-probe Analysis.
- 5. Precise Synchronization/analysis is finally a battle with Environments.

### Thank you!