STELLA-II Experiment Update on Monoenergetic Laser Acceleration

Karl P. Kusche

ATF Users’ Meeting
Jan. 31, 2002

Work was supported by the U.S. Department of Energy, Grant Nos. DE-FG03-98ER41061, DE-AC02-98CH10886, and DE-FG03-92ER40695
STELLA Collaborators

- STELLA team consists of collaborators from several institutions
 - Marcus Babzien (BNL)
 - Ilan Ben-Zvi (BNL)
 - Lora Campbell (STI)
 - David Cline (UCLA)
 - Christian Dilley (STI)
 - Juan Gallardo (BNL)
 - Steve Gottschalk (STI)
 - Ping He (UCLA)
 - Karl Kusche (BNL)
 - Richard Pantell (Stanford U.)
 - Igor Pogorelsky (BNL)
 - David Quimby (STI)
 - John Skaritka (BNL)
 - Loren Steinhauer (UW)
 - Arie van Steenbergen (BNL)
 - Vitaly Yakimenko (BNL)
 - Feng Zhou (UCLA)

- Newest STELLA collaborators
 - Russian Academy of Sciences: Nikolai Andreev, Sergei Kuznetsov, and Alla Pogosova
 - Hebrew University: Arie Zigler
 - Naval Research Laboratory: Antonio Ting
Outline

• Introduction

• Staged Electron Laser Acceleration (STELLA-II)
 - Description of experiment
 - Present status
 - Near-term plans

• Results of Workshop on Staged Laser Acceleration, Dec. 4-6, 2001, Tucson, Arizona

• Closing remarks
STELLA Demonstrated Staging of Laser Acceleration Process

- Staging process demonstrated for first time during Staged Electron Laser Acceleration (STELLA) Experiment*
 - Used inverse free electron laser (IFEL) as laser acceleration mechanism
 - IFEL buncher (IFEL1) creates femtosecond microbunches
 - IFEL accelerator (IFEL2) accelerates microbunches

STELLA-II Builds Upon Success of STELLA

- Primary goal of STELLA-II is to demonstrate staged monoenergetic laser acceleration
- STELLA-II will be one of first to examine monoenergetic laser acceleration
 - Use single laser beam to drive both buncher and accelerator – greatly reduces phase jitter
 - Use tapered undulator in accelerator + high laser power (≥ 10 GW) – enables clean separation of accelerated microbunches while maintaining narrow energy spread

Model prediction at optimum phase delay

- 11% gap taper
- $P_L = 10$ GW
- $E = 46.5$ MeV
- $B_{\text{buncher}} = 250$ G
- $B_{\text{chicane}} = 6290$ G

Energy Shift (%)

Number of Electrons

Energy Shift (MeV)
Schematic of STELLA-II Experiment

- CO₂ LASER BEAM
- CONVEX MIRROR
- VACUUM PIPE
- PARABOLIC MIRROR WITH CENTRAL HOLE
- E-BEAM FOCUSING LENSES
- E-BEAM FOCUSING LENSES
- DIPOLE MAGNET
- VACUUM PIPE
- ACCELERATOR (IFEL1)
- BUNCHER (IFEL1)
- ACCELERATOR (IFEL2)
- TAPERED UNDULATOR ARRAY
- CHICANE
- E-BEAM FOCUSING LENSES
- VACUUM CHAMBER
- SPECTROMETER VIDEO CAMERA
- = QUADRUPOLE MAGNET
- PARABOLIC MIRROR WITH CENTRAL HOLE
- WINDOW
- LENS
Sketch of STELLA-II Beamline
STELLA-II Beamline and Baseplate
Undulator (Accelerator) on Beamline
Photograph of Buncher

- Single-period electromagnet
 - Purpose is to modulate e-beam energy by ±0.5%
 - High laser power means little B-field needed
 - Features wide gap to accommodate short laser beam Rayleigh range
3-D Drawing of Chicane

- Hybrid electromagnet/permanent magnet device

- Serves two purposes
 - Permanent-magnet field chosen to cause bunching at accelerator (eliminates 2-m drift space between buncher and accelerator during STELLA)
 - Electromagnet allows fine adjustment of phase delay between arrival of microbunches and laser pulse in accelerator undulator (replaces optical delay plate used during STELLA)
STELLA-II Hardware Being Tested & Laser Transport Being Upgraded

- New beamline vacuum pipe and diagnostic ports installed
 - Located where STELLA-I IFEL1 (buncher) previously positioned
 - E-beam successfully tuned through new beamline
- Untapered and tapered undulator already tested individually
 - Plan to initially use 11% gap taper (one of highest tapers ever tested)
- Buncher and chicane need to be tested next
- Laser transport system being upgraded to permit delivering higher laser power
 - Need short Rayleigh range for high laser intensity in undulator and to prevent optical damage of optics
 - Laser beam to enter beamline through lid of Smith-Purcell chamber
 - Large diameter mirrors already available, other custom optics ordered, (NaCl window and lens)
Near-Term Plans

- Buncher installed on new beamline
 - Still need to verify proper operation
- Support hardware for new laser beam transport system currently being designed and should be fabricated by latter part of February
 - Optics should be delivered at same time
 - Assemble new laser beam transport system in February
- In February, finish assembly, testing, and installation at ATF of chicane
- Test new laser beam transport system together with individual STELLA-II components beginning in March
 - ATF CO$_2$ amplifier should be ready to deliver ≥ 10 GW
 - Finish individual testing of buncher and chicane
- Begin fully integrated experiments in March/April
Results of 2001 Workshop on Staged Laser Acceleration

• Purpose of STELLA 2001 Workshop
 - Examine issues related to performing STELLA-II experiment
 - Develop ideas for staging other laser acceleration methods, such as laser wakefield acceleration (LWFA)
 - Discuss related issues, such as plasma channels suitable for staging
 - Examine other new types of acceleration mechanisms, such as novel vacuum acceleration

• Workshop was very successful and productive
 - Experimental issues related to STELLA-II and vacuum acceleration discussed
 - LWFA experts (Andreev and Ting) provided valuable input on possible new staging ideas

• New collaborations more firmly established
 - Will use when developing ideas for next program following STELLA-II
 - Analysis already begun on several new ideas
Closing Remarks

• STELLA-II hardware coming into place nicely
 - Individual components tested thus far performing as expected

• Upgraded laser beam transport should enable delivering >4 J pulse energy
 - For 180 ps pulse length, corresponds to >20 GW
 - For ~10 ps pulse length, corresponds to 400 GW

• Monoenergetic laser acceleration can be demonstrated with only 10 GW
 - Plan to initially deliver ~10 GW
 - As higher peak power becomes available, can try larger taper
 • Maximum possible taper is \(\approx 20\%\) and requires at least 100 GW
 • Buncher can handle 100’s GW (requires less B-field)
 • Chicane performance is not directly tied to laser power

• Expect this early spring to be another exciting time for STELLA!