Submicron emittance and ultra small beam size measurements at ATF.

Vitaly Yakimenko

January 31, 2002

Accelerator Test Facility
Brookhaven National Laboratory
Outline/Conclusion

- **0.8 μm** normalized RMS emittance was measured for **0.5 nC / 60 MeV** electron beam (full – not slice)
 \[\sigma_{RMS} = \sqrt{\varepsilon_{RMS}} \beta \]

- Beam waist of the order of **10 μm** was achieved and measured for **0.5 nC / 60 MeV** beam
Fitting the beam size using multiple BPMs to resolve emittance

BPMs were used to measure beam sizes >200 µm and quads for smaller sizes.

Focusing properties of the transport line were extensively studied for the tomographic phase space rotation.
Accelerator Test Facility Layout
BPM resolution limit

Beam images taken consequently with the six different diagnostics under stable experimental conditions (the charge \(Q \sim 500 \) pC).

Electron beam horizontal spot size as a function of charge, measured with the scintillating diagnostics and the OTR.
Step #1 to improve emittance

✓ Stability of the driving laser and RF

[Graph showing ATF Laser Oscillator-to-Clock Relative Phase [ps]]
Step #2 to improve emittance

✓ Beam based alignment of the focusing quads to transport beam thought the linac center.

CCD Images of the 0.5 nC /60 MeV beam after linac

No tricks with black level...
Step #3 to improve emittance

ɪAccelerating gradient in the RF GUN was increased to approximately 110 MV/m

Laser cleaning of cathode produces Mg plug cathode with $Q_e \approx 0.35\%$
Step #4 to improve emittance

- Laser spot on the cathode was optimized to generate round electron beam.
- Damaged optical lens in the driving laser transport was identified and replaced.
- Beam was tuned to maximize gain in VISA.
Step #5 to improve emittance
Longitudinal Emittance Compensation

- PAC 97
In vacuum, permanent magnet quadrupoles were installed approximately 20 cm from focal location to produce 10 μm spot size. ($\beta \sim 1$ cm and $\varepsilon \sim 1$ μm).
Acknowledgments

Many ATF staff members:

Marcus Babzien Robert Malone
Ilan Ben-Zvi Xijie Wang

and ATF users, particularly

Alex Mirokh Denis Palmer

were involved in the continuous effort to improve electron beam brightness

Work was supported by the U.S. Department of Energy, Grant Nos. DE-AC02-98CH10886
• Thank you!