The VISA Program:
Recent Results and Measurements

Gerard Andonian, UCLA
ATF Users Meeting
BNL, Long Island, NY
April 4-6, 2007
Collaboration

• UCLA PBPL

• BNL ATF
 – M. Babzien, I. Ben-Zvi, K. Kusche, R. Malone, V. Yakimenko

• INFN LNF
 – M. Ferrario, L. Palumbo, C. Vicario
Outline

• History and Motivation
• Experiment Description
• VISA I Summary
• VISA IB Summary
• VISA II
• Current Program
 – Seeding Experiments
 – Orbital Angular Momentum
 – High Current Operation
 – Other Measurements
• Progress Report and Timeline
History

- VISA program has 10 year history with ATF
 - 1998: Proposed as precursor to LCLS
 - 2001: First lasing and saturation (840nm)
 - 2002: Harmonics, micro-bunching
 - 2004: Observation of ultra-wide bandwidth FEL
 - 2005: DDS (Double-differential spectrometer)
 - 2007: First lasing at 1micron
 - 2007: Seeding Studies

- Scientific results / publications
 - Journals - PRL, PRE, NIMA, etc.
 - Numerous Conf. Proc. (PAC, FEL, etc.)
 - Tech. Notes
 - 2 PhD dissertations (at least 2 more coming)

- Funding
 - ONR, NSF, DoE BES, DoE HEP
Experiment Layout

- **Accelerator Test Facility (ATF)**
 - Host for VISA program
 - up to 72 MeV beam
 - 28 m beam transport
 - 20 deg bend (F-line)
 - ATF provides maintenance and support

- **Undulator**
 - 4 x 1m sections
 - FODO lattice superimposed (25 cm period) – strong focusing
 - External steering coils (8)
 - Intra-undulator diagnostics
 - 50 cm apart
 - double-sided silicon
 - SASE FEL & e-beam (OTR)

VISA Undulator Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulator type</td>
<td>Planar (NdFeB)</td>
</tr>
<tr>
<td>Number of periods (N_u)</td>
<td>220</td>
</tr>
<tr>
<td>Peak field (B_{pk})</td>
<td>.75 T</td>
</tr>
<tr>
<td>Undulator Period (λ_u)</td>
<td>1.8 cm</td>
</tr>
<tr>
<td>Gap (g)</td>
<td>6 mm</td>
</tr>
<tr>
<td>Undulator Parameter (K)</td>
<td>1.26</td>
</tr>
</tbody>
</table>
Hardware and Diagnostics

Optical Transport Line
- Array of lenses, mirrors
- Transport radiation from each port

Simultaneous Diagnostic Station
- Beam splitter, delay line
- Shot-to-shot diagnostic
 - Charge, spectrum, profile, energy
- Modular
 - Add new diagnostics (FROG)
 - Advanced diagnostics (DDS)
VISA I Summary

• Results
 – Gain ~ 10^8 due to nonlinear compression in dog-leg (F-line)
 – Shortest gain length recorded in NIR (18 cm @ 840nm)
 – Higher order angular spectra
 – CTR & Higher Harmonic Gain

• Start to End Simulation Suite
 – Parmela
 – Elegant
 – Genesis

• Codes Benchmarked to measurements
 – Post linac, post-dogleg, FEL
VISA IB Summary

- High gain FEL
 - Chirped beam amplification
 - SASE energy ~2 \(\mu \)J
 - close to saturation
- Up to 15% bandwidth observed
- Very reproducible and unusually stable
 - insensitive to RF drifts and phase jitter
- Characteristic double-spike structure

Wavelength Spectrum of FEL at VISA measured with Ocean Optics USB2000 Spectrometer.
VISA IB Analysis

- Start-to-End
 - Experimental Spectrum features reproduced
 - Numerical Studies on no energy spread case yield similar results
 - Angles Important
 - Off-axis Doppler Shift

\[\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{1}{2} K^2 + (\gamma \theta)^2 \right) \]

FEL output Power Spectrum reproduced by Genesis (~12% bandwidth)
VISA IB Analysis (STE)

- Linear chirp applied at linac
- Compression in dogleg
 - Portion of beam is always in “correct” comp. regime
 - Collimation ~40% (~300 pC)
 - Benchmarked to data taken in F-line
- Leads to off-axis injection of compressed core

- High Current
 - peak > 300 A
 - Better than VISA I
Angular Dist.

- Far-field Angular Distribution Pattern
 - Screen placed ~3m (10 Z_R) away
 - Hollow modes similar to VISA I
 - more pronounced in angle
 - Helical patterns observed
 - Investigate with mode converter (later)
VISA II: Sextupoles

- **Hardware Status**
 - Sextupoles installed
 - Tested and operational

- **Sextupole operation**
 - T_{166} measurement
 - correlate to T_{566} from simulations

\[
\Delta x_{cen} = R_{16} \delta + T_{166} \delta^2
\]

T_{166} measurement: $T_{166} = 1.94$ m, $R_{16} = 0.01$ m

e-beam profile in F-line with sextupoles on
Seeded Amplifier

- **Motivation**
 - Control and manage high power FEL beam in far-field
 - Establish transverse & longitudinal coherence with seeded pulse (low bandwidth, high brightness)
- **Far field studies**
 - Increase angle, decrease intensity
 - e.g. deliver high power without damaging optics
- **Experiment**
 - VISA undulator with 61 MeV beam
 - Seed with 1064 nm YAG
- **Study detuning effects with start-to-end simulations**
- **Study coherence with double-slit, pepper-pots**
SA Status

• Transverse Alignment
 – aligned on profile monitors
 – waist positioned ~40cm downstream of undulator entrance
 • maximize the interaction with e-beam and seed when the seed is most intense (combat diffractive effects)

• Longitudinal alignment (timing)
 • sensitive photodiode (100-200ps resolution)
 • using YAG with SASE signal (or striplines)
 • scan in 10ps steps with delay line “trombone”
 – upgrade diagnostics for 1 micron
 • CCD, spectrometer

• Observed SASE at 1030-1064nm
 – high gain (~20nJ)
Ongoing Projects

- VISA Collaboration has more ideas and measurements
 - Orbital Angular Momentum measurement
 - further investigate hollow modes and spiral features of FEL
 - High Current FEL
 - SASE with dedicated beam compressor
 - Energy spread mitigated by x-band cavity (silencer)
 - Transition Undulator Radiation
 - radiation due to the change in long. velocity of e-beam at entrance and exit of undulator
 - radial polarization
 - need polarizer, rotatable mount, and dipole (or steerer) to kick beam before exit port
OAM Measurements

• Research goal
 – Characterize and determine the origin of exotic structures in distribution of VISA
 – OAM describes the helicity of the phase evolution
 • “helical” light described as a combination of LG modes
 – Experiments
 • Off-axis interferometer
 • Coherence measurement (pepper-pot)
Off-Axis Interferometry

Dove prism flips image about one axis

$\begin{align*}
 x &\rightarrow -x \\
 y &\rightarrow y
\end{align*}$

Hollow Modes

Spiral Modes

$l=1$

$l=2$

$l=0,1$

$l=1,2$

courtesy E. Hemsing
Coherence (Pepper-pot)

$LG^2_0 + LG^3_0$

LG^1_0

Gaussian

Peak

Null

Null

courtesy E. Hemsing
High Current VISA

- Chicane bunch compressor
 - increase current to kA level
 - shorten gain length
 - deep saturation studies
 - bifurcation
 - phase-space shredding
 - add x-band linac
 - “silence” energy spread
 - continue STE

Beam bifurcation of compressed beam

ATF bunch compressor CAD drawing.

ATF bunch compressor installed in tunnel.
Silencer STE

Longitudinal Phase space
(before and after x-band linac)

Current profile
(>300A)
Near-term goals

• **Measurements**
 – Seeded Amplifier
 • Data by PAC (or FEL), PhD Thesis by M. Dunning
 – OAM
 • Mode-converter, phase front detector
 • Start-to-end studies, analytical studies
 • Data by end of year (or next), PhD Thesis by E. Hemsing
 – CTUR
 • Polarizer after undulator

• **Hardware Upgrades**
 – F-line enhancements
 • alignment laser (straighten if necessary)
 – Sensitive photodiode
 • higher resolution for seeding scans
 – x-band “silencer”
Conclusions

• The VISA program yields rich data sets
 – VISA I, VISA IB, VISA II, SA, OAM
 • Non-linear Compression
 • Observed anomalous ultra wide bandwidth
 • High gain chirped beam FEL
 • Studies on seeding and angular distribution meas.
 • Studies on hollow modes
 – Confidence in Start-to-end suite
 – Develop new diagnostics

• Only ultra short gain length SASE FEL in operation
 – great test facility for x-ray FEL projects that must use SASE
 – many surprises arise in any experiment
 • minimize the “surprises” one may encounter in large scale expt.

• More runs & data forthcoming
 – SA, OAM, Silencer, also Compressor Studies and RF undulator