Investigations of Radiation Production from an RF Undulator
A proposal to the Brookhaven Accelerator Test Facility

Apr. 4-5, 2007
ATF User Meeting, Brookhaven National Laboratory

G. Andonian, M. Dunning, A. Fukasawa*, E. Hemsing,
C. Pellegrini, S. Reiche, and J. B. Rosenzweig*

UCLA, Dept. of Physics & Astronomy

A. Marinelli and L. Palumbo
Universita degli Studi di Roma “La Sapienza”

D. Alesini and B. Spataro
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati

M. Babzien, K. Kusche, and V. Yakimenko
Accelerator Test Facility, Brookhaven National Laboratory
Outline

- What is RF undulator?
- Estimate the property of the RF undulator for the test.
- Deflection in the transition region.
- Expected diagnostics.
- “Boundary conditions” for the investigation of RF undulator at ATF.
- Summary.
- Alternating field made in a waveguide by feeding high power RF acts as an undulator, instead of a set of alternating magnets.

- The development of a 100 MW X-band klystron enables TWU experiments.
Waveguide Undulator

Advantages
- A simple, straightforward to manufacture, waveguide geometry.
- Large apertures with short undulator wavelengths.
- Large K values with existing X-band sources.
- Circular polarization may be implemented.
- The field uniformity is guaranteed within the precision of machining.
- The cost per meter of the undulator may be lessened.

Issues
- Reliability of dealing with high powers in the TWU waveguide.
- Management of secular decay in the field due to attenuation.
- Potential for large deflections at the TWU entrance.
- Inherent transverse defocusing.
- The challenge of diagnosing and controlling the beam inside of very high power wave-guide environment.
Undulator parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency</td>
<td>11.424 GHz</td>
</tr>
<tr>
<td>RF power</td>
<td>100 MW</td>
</tr>
<tr>
<td>Waveguide WR90</td>
<td>22.86 x 10.16 mm²</td>
</tr>
<tr>
<td>Mode TE₁₀</td>
<td>15.77 x 7.01 mm²</td>
</tr>
<tr>
<td>Critical Frequency</td>
<td>6.56 GHz</td>
</tr>
<tr>
<td>Field Attenuation</td>
<td>1.1 %/m</td>
</tr>
<tr>
<td>Equivalent undulator period</td>
<td>14.4 mm</td>
</tr>
<tr>
<td>Equivalent magnetic field</td>
<td>0.17 T</td>
</tr>
<tr>
<td>K</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Scaled in area down by 2.1 in order to obtain higher K.

- Longer period
- Higher beam energy
- Higher attenuation
- Tapered waveguide (if required)
Estimation for FEL Experiments

<table>
<thead>
<tr>
<th>Waveguide</th>
<th>WR90 (22.86 x 10.16 mm²)</th>
<th>15.77 x 7.01 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation wavelength</td>
<td>532 nm</td>
<td></td>
</tr>
<tr>
<td>Beam energy</td>
<td>60.3 MeV</td>
<td>66.9 MeV</td>
</tr>
<tr>
<td>I</td>
<td>300 A</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.5 m</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>2 mm.mrad</td>
<td></td>
</tr>
<tr>
<td>FEL parameter (1D)</td>
<td>(0.0064)</td>
<td>(0.0096)</td>
</tr>
<tr>
<td>Gain Length (1D)</td>
<td>(0.32 m)</td>
<td>(0.25 m)</td>
</tr>
<tr>
<td>Rayleigh Length</td>
<td>0.20 m</td>
<td>0.18 m</td>
</tr>
</tbody>
</table>

Required numerical analysis for precise gains since $L_R < L_G$.

Seeded FEL

Gain of 2.3 for the smaller waveguide with 1 m interaction (GENESIS)
Potential for deflection in the transition region at the entrance of the waveguide.

Inhomogeneous field can cause deflection.

Vertical E Field along the axis

Normalized Distance

$E_y [\text{V/m}]$

0 deg

Envelope

90 deg

0 2 4 6 8 12

Normalized Distance

Entrance hole diameter: 2 mm

Field direction in the waveguide

HFSS

Beam

RF

Inhomogeneous field can cause deflection.
1D simulation for estimation of deflection

- The beam energy is 70 MeV.
- The input RF power is 50 MW. \[\rightarrow 0.14 \text{ mrad at the maximum.} \]
- WR90

- 0.23 mrad for the beam energy of 60 MeV and the input RF power of 100 MW.

Klystron should be operated at the RF phase which yields the minimum deflection.
Diagnostics

Beam diagnostics
- Deflection in the transition region
- Defocusing effect

FEL diagnostics
- Spontaneous emission
- Gain for seeded FEL at 532 nm.

CCD camera and screen
(Ce:YAG screens used on previous VISA and ATF compressor experiment)

We can use instruments of VISA experiment, while some of them are required to be replaced for 532 nm.
(VISA is run at 800 – 1080 nm)

These diagnostics are almost in hand.
The “Boundary Conditions” for the Investigations

RF
- 100 MW of RF power at 11.424 GHz.
- Linearly polarized waves.
- Flat top waveform.

Beam
- A 60 MeV, 300 A peak e-beam with 2 mm-mrad emittance.

Physical Space
- 1 m of free space for installation.

Radiation
- Fundamental radiation wavelength foreseen at 532 nm.

Specifications of the SLAC Klystron at ATF.

Will be obtained in normal operation.

Demonstrated at UCLA/ATF compressor experiment.

The downstream straight-through beamline (H-line).

Can be obtained provided the proper beam energy and waveguide.

A set of the first, proof-of-principle experiments on the TWU experiment seems to be able to be performed at ATF.
Summary

We proposed for an X-band RF undulator experiment.

RF undulator
- WR90 or smaller waveguide.
- The input power is 100 MW at 11.424 GHz.
- K value is 0.23 or 0.41.

Beam and beamline
- A 60 or 67 MeV, 300 A peak e-beam with 2 mm-mrad emittance.
- 1m of the space for the installation in the beamline is expected.

Diagnostics
- Deflection (0.23 mrad at the maximum) and defocusing effect.
- Spontaneous emission and gain (2.3 by GENESIS) of seeded FEL at 532 nm.