Multi-bunch Plasma Wakefield Experiments

Presented by Patric Muggli, USC

Efthymios Kallos, Tom Katsouleas, Patric Muggli
USC, Los Angeles, California

Marcus Babzien, Ilan Ben-Zvi, Karl Kusche, Igor Pavlishin, Igor Pogorelsky,
Daniil Stolyarov, Vitaly Yakimenko
Brookhaven National Laboratory, Upton, Long Island, NY

Wayne D. Kimura, STI Optronics, Inc., Bellevue, WA

Work supported by US DoE
OUTLINE

- Introduction to the plasma wakefield accelerator (PWFA)
- Single bunch results
- Multi-bunch experiments (2-150)
- Two bunches at ATF
- Plasma source
- Experimental results / comparison with theory
- Summary / Conclusions
Plasma wave/wake excited by a relativistic particle bunch

Plasma e⁻ expelled by space charge forces \(\Rightarrow\) energy loss + focusing

Plasma e⁻ rush back on axis \(\Rightarrow\) energy gain

Plasma Wakefield Accelerator (PWFA) = Energy Transformer

Booster for high energy accelerator?
Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator

Ian Blumenfeld1, Christopher E. Clayton2, Franz-Josef Decker1, Mark J. Hogan1, Chengkun Huang2, Rasmus Ischebeck1, Richard Iverson1, Chandrashekar Joshi2, Thomas Katsouleas2, Neil Kirby1, Wei Lu1, Kenneth A. Marsh2, Warren B. Mori2, Patric Muggli3, Erdem Oz2, Robert H. Siemann1, Dieter Walz1 & Miaomiao Zhou2

SLAC Beam:
\[E_0 = 28.5 \text{ GeV} \]
\[\sigma_z \approx 20 \text{ \mu m} \]
\[N = 1.8 \times 10^{10} \text{ e}^- \]
\[n_e = 2.7 \times 10^{17} \text{ cm}^{-3} \]
\[L = 90 \text{ cm} \]

42 to 84 GeV in 90 cm

Energy Doubling

100% $\Delta E/E$

P. Muggli, ATF Users Meeting 07/05/07
Cohesive Acceleration and Focusing of Relativistic Electrons in Overdense Plasma

FIG. 4 (color). Spectrometer images, showing intensity in a combined false-color and contour plot. Energy is shown on the horizontal axis and transverse size in the vertical axis: (a) plasma off, (b) plasma on, Δt = 3 μs.

ATF 300 pC, 1.3 ps: gain 0.6 MeV over 17 mm plasma at n_e ≈ 5 x 10^{16} cm^{-3}

Accelerating gradient: 35 MV/m

Continuous energy spread
Bunch spacing/plasma density condition:
\[\Delta z = \lambda_p \text{ (resonance) } \sigma_z \ll \lambda_p \]
\[\Delta z' \approx \lambda_p / 2 \]

Plasma wavelength:
\[\lambda_p = \frac{2\pi c}{\omega_{pe}} \]

Plasma angular frequency, density \(n_e \):
\[\omega_{pe} = \left(\frac{n_e e^2}{\varepsilon_0 m_e} \right)^{1/2} \]

Wake fields add up (linear theory):
\[E_z \text{ N bunches} = N \times E_z \text{ 1 bunch} \]
(beyond energy doubling!)

Maximize transformer ratio with “shaping”

Finite energy spread, beam acceleration
Electron Beam
- $I_{\text{peak}} \approx 100\, \text{A}$
- $E_0 = 45\, \text{MeV}$
- $Q = 300\, \text{pC}$

10μm
- IFEL
- Pre-buncher
- \Rightarrow Velocity modulation
- $\Rightarrow \Delta E/E \approx 1\%$

Multi-bunches
- $I_{\text{peak}} \approx 600\, \text{A}$
- $\sigma_r = 25\, \mu\text{m}$

Ablative Capillary Discharge Plasma

$\Delta n_e = \frac{\Delta \omega_{pe}}{2n_e} = \frac{\Delta \omega_{pe}}{\omega_{pe}} \propto \frac{1}{N}$

$n_e = 10^{19}\, \text{cm}^{-3} \pm \text{a few \%}$

Laser Beam
- CO$_2$: $\lambda_0 = 10.6\, \mu\text{m}$, 200 ps
- $P_{\text{peak}} \approx 1$-2GW

2.5 m Drift

Components available on ATF beam line 1

P. Muggli, ATF Users Meeting 07/05/07
Wakefield: Theory-Simulations

- Theory: non-linear equations for E_{wake}, p_z, n_e
- Resonant plasma density: $n_0=1.0 \times 10^{19} \text{ cm}^{-3}$ over 1 mm plasma, 10.6 μm bunch spacing. $[0.01 \text{ e}/(mc\omega_p) = 3 \text{ GV/m}], \sigma_r=25 \mu$m
- $\approx 6.5 \text{ GeV/m}$ with good agreement between theory and simulation

P. Muggli, ATF Users Meeting 07/05/07
Difficult to reach 10^{19} cm$^{-3}$ in capillary (D. Stolyarov, yesterday)

Larger bunch spacing $\Delta z \leftrightarrow$ lower n_e

This morning, W. Kimura: “Generation of Tunable Micro-bunch Train”

- Choice of $\Delta z \leftrightarrow$ choice of n_e
- Choice of number of bunches
- Generation of witness bunch
- Beyond energy doubling (application to high energy accelerator, ILC?)

Two-bunch experiment

- Two-bunch parameters fixed (length, delay, charge, …)
- Vary plasma density n_e to vary relative phase of witness bunch in the accelerating structure
- Accelerating gradient varies with n_e
- Narrow energy spread?
Bunch spacing/plasma density condition:
\[\Delta z = \lambda_p \text{ (resonance) } \sigma_z \ll \lambda_p \]
\[\Delta z = \lambda_p / 2 \]

Plasma wavelength:
\[\lambda_p = \frac{2\pi c}{\omega_{pe}} \]

Plasma angular frequency, density \(n_e \):
\[\omega_{pe} = \left(\frac{n_e e^2}{\varepsilon_0 m_e} \right)^{1/2} \]

Wake fields add up (linear theory):
\[E_{z \text{ N bunches}} = N \times E_{z \text{ 1 bunch}} \] (beyond energy doubling!)

Maximize transformer ratio with “shaping”

Finite energy spread, beam acceleration

P. Muggli, ATF Users Meeting 07/05/07
Two-Bunch Generation

W. Kimura et al., AAC’06 Proceedings

Two-bunch Parameters:

- \(E_0 \approx 60 \text{ MeV} \)
- \(\Delta E \approx 1.8 \text{ MeV} \)
- \(Q_{\text{High}} = 300 \text{ pC} \)
- \(Q_{\text{Low}} = 200 \text{ pC} \)

FIGURE 2. Cartoon of chicane/dogleg system showing a possible scenario for the double-bunch formation process.

FIGURE 3. Raw energy spectrums of double-bunch e-beam. Energy dispersion increases to the left.
(a) Before the chicane and without compression. Energy spread is \(\sim 4\% \) FWHM.
(b) At the high-energy slit located downstream of the chicane.
(c) At the spectrometer at the end of the beamline.
Two Bunches in Time

Coherent Transition Radiation (CTR) Interferometry

Bunch Auto-correlation Trace

FIGURE 7. Example of raw data from CTR interferometer (circles) and the curve fits to the data (solid line) calculated from the autocorrelation integral [2]. (a) Single bunch. (b) Double bunches.

- **Single Bunch**
 \[\sigma_t \approx 144 \text{ fs} \]

- **Double Bunch**
 - Gaussian
 - \(\sigma_t^{\text{High}} \approx 144 \text{ fs} \)
 - \(\sigma_t^{\text{Low}} \approx 90 \text{ fs} \)
 - \(Q^{\text{High}} = 300 \text{ pC} \)
 - \(Q^{\text{Low}} = 200 \text{ pC} \)
 - \(\Delta \tau \approx 500 \text{ fs} \)

Use PWFA interaction to determine time sequence! (High=Driver, Low=Witness)
Plasma Density from H_{α} Stark Broadening

After $I=0$: \[n_e = n_0 e^{-\alpha t} \]

\[\alpha = 3 \text{ } \mu s^{-1} \]
\[\alpha = 1.7 \text{ } \mu s^{-1} \]

FIG. 1. Experimental setup and capillary design.

Kaganovich et al., APL 1997

Vary discharge-beam delay to vary the plasma density
Plasma OFF

Plasma ON

$4 \times 10^{15} \text{ cm}^{-3}$

$\lambda_p = 530 \mu m > \Delta z$

$1 \times 10^{16} \text{ cm}^{-3}$

$\lambda_p = 334 \mu m = \Delta z / 2$

P. Muggli, ATF Users
ENERGY LOSS / GAIN

2-bunch

\(n_e=4 \times 10^{15} \text{ cm}^{-3}, L=6 \text{ mm} \)

\(\lambda_p=530 \mu m > \Delta z \)

\(\Delta E_D \approx -1.1 \text{ MeV} \)

\(\Delta E_W \approx -1.3 \text{ MeV} \)

\(G \approx -200 \text{ MeV/m (L=6 mm)} \)
2-bunch
\(n_e = 1 \times 10^{16} \text{ cm}^{-3}, L = 6 \text{ mm} \)
\(\lambda_p = 334 \mu \text{m} \approx \Delta z \)
\(\Delta E_D \approx -0.9 \text{ MeV} \)
\(\Delta E_W \approx +0.9 \text{ MeV} \)
\(G \approx +150 \text{ MeV/m} \) (\(L = 6 \text{ mm} \))
Energy Loss / Gain

1-bunch (Low)

\[n_e = 1 \times 10^{16} \text{ cm}^{-3}, \quad L = 6 \text{ mm} \]
\[\Delta E_W \approx -1.0 \text{ MeV} \]
\[G \approx -165 \text{ MeV/m} \ (L = 6 \text{ mm}) \]

Low energy is 2nd in time: **Loses by itself**

Gains with other bunch

Graphs:

- Top graph: Illustration of plasma OFF and ON scenarios.
- Middle graph: Time evolution of electric field (E vs. Time).
Agreement with 2D model

Maximum accelerating gradient \((0.9+1.0)\text{MeV}/6\text{mm}=316\text{MeV/m}\)
SUMMARY / CONCLUSION

- Used beam break-up for two-bunch PWFA experiment at ATF
- Varied n_e to vary the wakefield “phase” between the 2 bunches
- Measured peak energy gain of 1 MeV over 6 mm
- Unloaded wakefield ≈ 316 MV/m (unloaded)
- Energy gain/loss in good agreement with theory
- PWFA as beam/plasma diagnostic
 More to come …
- Reach $n_e=10^{19}$ cm$^{-3}$ for multi-bunch PWFA experiment ($N\approx 150$)
- Multi-bunch ($N=1, \ldots, 5$) mask PWFA experimental program
 ($\Delta E/E<1$, and important for $> \text{ energy doubling}$!)
MOST IMPORTANTLY

Thank you to the ATF staff for making this possible!

😊