YAG Status, Experimental Support & Instrumentation

Marcus Babzien BNL/ATF

Igor Pogorelsky CO_2 laser and experimental support

Mikhail Polyanskiy LDRD post-doc, simulations, diagnostics

Marcus Babzien YAG laser, general optical diagnostics

Daniil Stolyarov *Post-doc, fs solid-state laser*

Karl Kusche Laser safety, computer controls

Vitaly Yakimenko Global laser strategy

Additional thanks to ATF mechanical, electrical & computer engineers & technicians

Operating Parameters

Energy: (dual pulse mode) Transverse Distribution: UV on cathode $0-30~\mu J$ Size range on cathode (\emptyset) 0.2 -

3mm

IR at CO2 table 7 mJ Variation from Top-Hat (P-P) <20%

Laser output: total IR 20 mJ

IR to gun 5 mJ / pulse Stability

Green 1 mJ / pulse Shot-to-shot (rms)

UV $200 \,\mu J$ Timing <0.2 ps

Energy 2 %

Repetition rate 1.5, 3 Hz Pointing (% of beam Ø) <0.3%

Pulse duration (FWHM): Drift (8 hour P-P)

Oscillator IR 7 ps Timing <2ps

Amplified IR 14 ps Energy <15%

Green 10 ps Pointing (% of beam \emptyset) <1%

UV 8 ps

- Similar to previous years reliability maintained
- Deliver more energy for Cu cathode by reducing UV losses

Operating Time

Nd:YAG Laser Operating Time

- Combined need for CO₂ laser slicing & Linac operations put the YAG system in high demand
- Mean daily running time > 10 hours

Pulse Train Operation

Oscilloscope traces of 40.8 MHz pulse train envelope measured by photodiode

- Demonstrated & used extensively in FEL oscillator experiment ca. 1997
- Produce up to 200 pulses flat within 5%
- S. Boucher proposal yesterday requires such a capability
- All hardware & expertise still in place!

Personal Protection Interlocks

- Manifold beam paths for flexibility & efficiency
- Old documentation not adequate
- Old hardware (PLC) no longer programmable

Personal Protection Interlocks

- Entirely replaced all logic hardware: PLC's, IO blocks, PS, cabling & cabinets
- Software thoroughly documented
- Approval process means redundant, independent review
- New touchscreen display system streamlines testing & provides global status display
- Entire system now in ATF hands!

Gun/LINAC Laser Alignment

- On-line surveying and beam alignment tool extends from gun, down 20° dipole and into F-line
- Allows more accurate & reliable installation of diagnostics
- Promotes understanding & limitations of beamline (F-line bent!)
- Speeds experiment assembly

Example:

Unexpected e beam emittance measured?

Check laser "emittance" on BPM and track down problems

Alignment Laser Spot Size (?)

CCD Study

- Experiments have different needs.
 e.g. PWFA needs high dynamic
 range over two consecutive linac
 pulses
- Determine absolute camera performance offline
- Provide a baseline to make determination of "best" camera for given experiment
- Digital camera ready or in use on Streak Camera, BL2 Spectrometer (PWFA & LACARA) & BL1 (Current Filamentation Instability)

Courtesy P. Muggli

CCD Critical Parameters

Camera	Bit Depth	Gain Setting	Photons /pixel /count	Dark Noise [photons/ pixel]	Max Signal [photons/ pixel]	Signal / Noise Limit
Cohu 4922 (Cooled)	10	Maximum	1.5	28	1535	55
"	10	Middle	3.7	31	3785	123
"	10	Minimum	40	60	40920	682
Cohu 2122 ("Small")	10	High	3.4	68	3478	51
Pulnix TM-745E	10	NA	39	90	39897	443
Basler scA1400-17gm	12	Maximum	3.3	23	13514	588
"	12	Middle	15	25	61425	2457

- Modern digital camera (Basler) demonstrates improvements over older analog units
- Digital (Gigabit ethernet) interface makes synchronization much simpler as no continuous video stream necessary – operate camera single shot
- Additional factors more dependent upon particular experimental needs, i.e. pixel size & count, pulse duration & integration

CCD Study

Colormap affects image visibility more for 12-bit digital image and manual "beam tuning" tasks

Basler camera now supported by new ATF frame grabber – including multiple colormap manipulation tools

BROOKHAVEN NATIONAL LABORATORY

Standard BPM Enhancement

- Existing "Standard" BPM imaging optics widespread on all beamlines
- Use off-the-shelf components to meet variety of requirements
- Additional focal length doubler creates useful variation of Standard BPM
- Further doubler additions cause significant to extreme loss of contrast
- New configuration improves resolution from 15 to 10 microns
- "On-demand" retrofit to any existing BPM in facility

In-vacuum Imaging Optics

- For plasma filamentation measurements, extend imaging resolution to sub-10 micron expected filament size
- Useful for vacuum acceleration experiment where smallest possible interaction region is desired
- Useful for Compton scattering with 1 μm laser
- All three experiments require sub 10 μm resolution or e⁻ beam focus
- ->Image OTR with this configuration

In-vacuum Imaging Optics

- Disassembled, cleaned & vented, not damaged at 10⁻⁶ Torr vacuum
- With better preparation 10⁻⁷
 Torr should be achievable
- Flexible imaging schemes possible with objective invacuum, secondary lenses outside beamline
- 50% MTF @ ~4 micron
- All metal or metalized components can intercept beam without damage

SFG Diagnostic Improvement

- Achieved brighter images & higher resolution camera & frame grabber
- Changes: 6W to 50W laser diode, photodiode triggering, reduced transport losses, elliptical spot on slit, camera improvement
- Still suffering from low streak camera QE

SFG Diagnostic Improvement

ATF Program Advisory & Users Meeting, April 2-3,2009

OTR Interferometer/Bolometer

- $\lambda \approx 5-500 \ \mu m$ OTR from metal mirror at BPM
- Interferometer designed by RadiaBeam Technologies
- LN₂/Helium-cooled dual-port bolometer detects thermal background

OTR Interferometer/Bolometer

- Kinematically interchangeable between BL 1 & 2
- On-line tool available as needed
- Cool down time <2 hours
- He hold time >6 hours

ATF Program Advisory & Users Meeting, April 2-3,2009

BROOKHAVEN NATIONAL LABORATORY

M.Babzien slide #17