Generation of Multi-bunch Trains with Sub-picosecond Separation for PWFA (and Other?) Applications

Patric Muggli, Efthymios Kallos
USC, Los Angeles, California

Vitaly Yakimenko, Jangho Park, Marcus Babzien, Karl Kusche
Brookhaven National Laboratory, Upton, Long Island, NY

Wayne D. Kimura, STI Optronics, Inc., Bellevue, WA

Work supported by US DoE
OUTLINE

- Motivation
- Mask idea
- Where and how?
- Results
- Summary and Future
MOTIVATION

e^- ENERGY DOUBLING $E_0=42$ GeV

Tremendous progress with PWFA
Need to accelerate a particle BUNCH
Explore high transformer ratio scheme, beyond energy doubling

E_0 $2E_0$

Energy doubling of e^- over $L_p \approx 85$ cm, 2.7×10^{17} cm$^{-3}$ plasma
Unloaded gradient ≈ 52 GV/m (≈ 150 pC accel.)
Bunch spacing/plasma density condition:
\[\Delta z = \lambda_p \text{ (resonance)} \]
\[\sigma_z << \lambda_p \]
\[\Delta z' \approx (m+1/2) \lambda_p \]

Plasma wavelength:
\[\lambda_p = \frac{2\pi c}{\omega_{pe}} \]

Plasma angular frequency, density \(n_e \):
\[\omega_{pe} = \left(\frac{n_e e^2}{\varepsilon_0 m_e} \right)^{1/2} \]

Wake fields add up (linear theory):
\[E_z N \text{ bunches} \approx N \times E_z 1 \text{ bunch} \]

Maximize transformer ratio with “shaping”

Finite energy spread \(\Delta E/E \ll 1 \), beam acceleration
PURPOSE & REQUIREMENTS

PWFA
✓ Equidistant drive bunch train
✓ Witness bunch
✓ Variable charge

Witness bunch acceleration, large transformer ratio experiments, beyond energy doubling

FEL
✓ Variable delay
✓ Variable energy
✓ Variable charge

Pump-probe experiments

Stability in time and energy
MULTIBUNCH GENERATION

Correlated energy chirp from linac

Emittance selection: scattered electrons are lost

Choose microbunches spacing and widths with mask and beam parameters: N, Δz, σz, Q

Nguyen, NIMA 96
P. Emma, PRL 04

To Plasma FEL, …
Beam size at the mask: \[\sigma_x = \sqrt{\frac{\beta_x \varepsilon_N}{\gamma_0} + \left(\frac{\eta_{\text{mask}}}{E_0} \right)^2} \]

= 1.372 cm

127 \mu m << 1.372 cm

Number of \(\mu \) bunches: \[N_b = \frac{\sigma_x}{D} = \frac{\eta_{\text{mask}} \Delta E}{E_0} \]

= 10 to 11

\(D = 1270 \mu m \)

\(L_z = 1650 \mu m \)

\(R_{56} = 4 \text{ cm} \)

\(Q_0 = 500 \text{ pC} \)

\(d = 500 \mu m \)

\(\beta_x = 1.9 \text{ m} \)

\(\varepsilon_N = 1 \text{ mm-mrad} \)

\(\eta_{\text{mask}} = 1.372 \text{ m} \)

\(\gamma_0 = 117 \)

\(\Delta E/E_0 = 1\% \)

Mask transparency

\(T = \frac{(D - d)}{D} \)

Bunch chirp:

\(\Delta E / E_0 \)

\(\Delta z = \frac{L_z'}{N} \approx \frac{L_z + R_{56} \Delta E / E_0}{\eta_{\text{mask}} \Delta E / E_0} \)

= 200 \mu m

\(\mu \) bunches charge:

\(Q_{mb} = T \frac{Q_0}{N_b} = \frac{Q_0(D - d)}{\eta_{\text{mask}} \Delta E / E_0} \)

= 30 \text{ pC}

\(\mu \) bunches current:

\(I_{mb} = \frac{Q_0 C}{L_z'} = \frac{Q_0 C}{L_z + R_{56} \Delta E / E_0} \)

= 73 A
ATF BEAM LINE

- CTR/time diagnostic
- Dogleg
- Experiment
- Energy/space diagnostic
- Mask
- Gun Linac
ATF BEAM PARAMETERS

MAD Results

Dogleg configured for large dispersion η_x and small beta function β_x at mask location

Energy Slit Location

Mask Location

$E_0=50$ MeV
$\varepsilon_N<2$ mm-mrad
$Q=350$ pC
$\tau_{in}\approx5.5$ ps
$\Delta E/E_0=\pm1\%$
$R_{56}=+4$ cm
$\tau_{out}\approx5.5\pm1.3$ ps
Mask Principle

Energy Slit

\[\Delta E/E_0 \approx 1\% \]

Transmitted

Mask

Wire Mesh

Wires Direction

W wires: Diameter \(d = 500 \ \mu m \)
Periodicity: \(D = 1270 \ \mu m \)

Mask transparency: \(T = (D-d)/D = 0.6 \)

Scattering:

\[\theta_0 \approx \frac{13.6 \text{MeV}}{\beta cp} \sqrt{\frac{x}{X_0}} \]

\[\epsilon_s = \left(\epsilon^2 + \sigma_x^2 \theta_0^2 \right)^{1/2} \gg \epsilon \]

Energy loss \(\approx 3\% \)

For stainless Steel \(x > 10 \ \mu m \)
MULTIBUNCHES IN ENERGY

Energy Spectrometer Image/spectra

Select # of bunches with energy slit (aperture)

Charge per microbunch determined by incoming bunch profile (here)

N=6

N=7

$\Delta E/E_0 \approx 0.5\%$
CTR INTERFEROMETRY

CTR:

\[I_{tot}(k) = I_{incoh} + I_{coh} = N_e I_e + N_e (N_e - 1) I_e |F(k)|^2 \]

Incoherent \(\ll\) Coherent

Autocorrelator signal:

\[S(\Delta z) = \int_{-\infty}^{\infty} dt \left(\frac{1}{2} E(t) + \frac{1}{2} E(t - \frac{\Delta z}{c}) \right)^2 \]

\(F(k)\) = Fourier transform of the bunch shape

Autocorrelation (cross term):

\[A(\Delta z) = \int_{-\infty}^{\infty} dt E(t) E(z - \frac{\Delta z}{c}) \]

Bunch shape

P. Muggli, ATF Users Meeting 04/03/09
Multibunches in Time

Coherent Transition Radiation (CTR) Interferometry

- Autocorrelation leads spacing Δz
- N microbunches $\Rightarrow 2N-1$ peaks
- Control N and Δz (I mean Δt!)

$\Delta z = 434 \mu m$

$\Delta z = 226 \mu m$

$\Delta E/E_0 \approx 1.5\%, 3.5\%$

P. Muggli, ATF Users Meeting 04/03/09
Autocorrelation Trace

Calculated

Bolometer response: ??->1000 µm
Filtering effect of the various apertures and windows

including filtering reproduces features of measured trace
Filtering affects bunch width measurement, but not µbunch spacing measurement!
BUNCH CONTRAST

\[T(x_0; x_{w,i}, d, \sigma_x) = 1 - \frac{1}{2} \sum_i \left[\text{erf}\left(\frac{x_{w,i} + d/2 - x_0}{\sqrt{2}\sigma_x} \right) - \text{erf}\left(\frac{x_{w,i} - d/2 - x_0}{\sqrt{2}\sigma_x} \right) \right] \]

Beam betatron size:
\[\sigma_x = \sqrt{\frac{\beta_x \epsilon_N}{\gamma_0}} \]

Wire positions:
\[D = x_{i+1} - x_i \]

Contrast decreases as \(\sigma_x/d \) increases

Present experiments: \(\sigma_x/d \approx 0.2 \)

Convolution function mask and beam betatron size

\(\sigma_x/d: \)
- 0.01
- 0.1
- 0.2
- 0.364

P. Muggli, ATF Users Meeting 04/03/09
Train for PWFA

Mask with non-equidistant “wires”

Measurement in energy plane

Generate “ideal” spacing for resonant PWFA

Charge modulation optimization possible

Plasma density must be adjusted for resonant excitation

D=1.56 mm

d=0.8 mm

Δz=150-400 µm, Δz’=225-600 µm

λ_p = plasma wavelength
Select number of drive bunches (high energy slit).

Witness bunch appears with drive bunch spacing on energy spectrometer CSR? See proposal by Alexei Fedotov
Summary / Conclusion

- Simple method to produce picosecond bunch train
- Proof-of-principle with wire mesh
- Stability in time and energy guaranteed by mask
- Number of µbunches and their spacing can be selected
- Bunch train pattern can be tailored for specific applications
 - Bunch spacing non-periodic, # bunches, length of bunches, charge, …
- Train length can be varied through bunch compression
- Application to PWFA experiments at ATF: train of drive bunches + witness bunch
- Influence, study of CSR effects

Thank you!

AND

Thank you **very much** to every one at ATF!