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Benefits of a gas jet 
as an ion beam source

 Pure (compared to solid targets 
which become quickly covered in 
impurities)

 Can employ H, He and other species 
difficult to make in other targets 

 Allows changing target material 
quickly

 Can run at high repetition rate
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Benefits from combining gas jet with 
a CO2 laser

• Due to λ =10 µm, ncr = ε0mω0
2/e2 = 1019 cm-3 is 100 

times lower than  for a solid sate laser.                                     
Gas-jets easier to make at this density allowing to 
operate hydrogen jet (proton source) in the most 
efficient, near-critical regime where maximum ion 
acceleration has been observed (foam targets) and 
RPA has been predicted. 

• Possibility for optical probing of overdense
interactions.
For 532nm, ncr ~ 4x1021 cm-3 (easy transmitted through the gas jet)



BNL experiment with gas jet

•2ω Nd:YAG, λ=532nm
•Pulse energy ~ 200μJ
• Pulse length ~10ps

•Nozzle 0.5-1mm
• Backing press.: 115 -
1100psig   
• 1.3ncr – 12.3ncr

• λ=10.6μm
• Pulse energy ~ 2-4J
• Pulse length ~ 5ps
• Focal spot w0= 60μm
• I ~ 5x1015W/cm2



BNL experiment with gas jet

•2ω Nd:YAG, λ=532nm
•Pulse energy ~ 200μJ
• Pulse length ~10ps

•Nozzle 0.5-1mm
• Backing press.: 115 -
1100psig   
• 1.3ncr – 12.3ncr

• λ=10.6μm
• Pulse energy ~ 2-4J
• Pulse length ~ 5ps
• Focal spot w0= 60μm
• I ~ 5x1015W/cm2

Here, probe is split 
into two: 
•Shadowgram–
directly imaged onto 
CCD
•Interferometry –
probe is sent into a 
Mach-Zender
interferometer and 
overlapped with itself



Wealth of non-linear phenomena observed



Hole boring by radiation pressure
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• Plasma discontinuity represents a shock with the critical surface moving at ~I/n.



Trend of increasing proton energy with I/n
• For opaque plasma (n>ncr), the 

radiation pressure, P=2I/c, initially  
pushes plasma electrons into the 
target. 

• Space charge field pulls along ions 
setting up an electrostatic shock 
moving at hole boring  velocity    
v=(2I/ρc)1/2

• Stationary ions in advance of the 
shock get accelerated by the same 
space charge field effectively 
bouncing off the shock front.*

• Associated with it proton energy 
E=½m(2v)2=4I/nc

* PRL 92, 015002 (2004)                     
PRL 93, 155003 (2004)



Narrow energy spread 
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 Proton beams observed with 
consistently narrow energy 
spread.

 Deconvolution with 
spectrometer instrument 
function to determine energy 
spread of beams.

 Energy spread down to ~ 4%
→ significantly narrower than 
previously observed.

 ~ 2x1012protons/MeV/sr           → 
1000 brighter than previous 
modulated spectra.

 Geometrical emittance    
ε=0.16 µm-rad

 Normalized emittance      
εn=βγε =8 nm-rad

foil



Simulation

a0= 0.6
τL= 6ps

Ionised H2

Laser: Target:
Simulation Conditions:

Triangular density profile
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Future prospects
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 Peak energies expected to increase with increasing a0

a0 = 1.5 easily achievable by changing to faster focusing

 higher a0 conceivable with planned laser upgrades
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400 µm

Additional investigations
• As well as intensity scaling, we plan to 

measure:

• Angular distribution of ion beam

• Acceleration of different ion species

• Investigation of influence of double pulses

• Investigation of influence of polarization

• Investigation of micro-gas targets
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