# Progress on proton acceleration from a hydrogen gas jet

C. Palmer, N. Dover, A. Dangor, Z. Najmudin, J. Schreiber The Blackett Laboratory, Imperial College London, SW7 2BW, UK

> P. Shkolnikov, M. Ispiriyan Stony Brook University, Stony Brook, NY, USA

I. Pogorelsky, M. Polyanskiy, M. Babzien, V. Yakimenko, Accelerator Test Facility, Brookhaven National Laboratory, NY, USA

## Benefits of a gas jet as an ion beam source

- Pure (compared to solid targets which become quickly covered in impurities)
- Can employ H, He and other species difficult to make in other targets
- Allows changing target material quickly
- Can run at high repetition rate

# Benefits from combining gas jet with a CO<sub>2</sub> laser

• Due to  $\lambda = 10 \ \mu m$ ,  $n_{cr} = \varepsilon_0 m \omega_0^2 / e^2 = 10^{19} \ cm^{-3}$  is 100 times lower than for a solid sate laser. Gas-jets easier to make at this density allowing to operate hydrogen jet (proton source) in the most efficient, near-critical regime where maximum ion acceleration has been observed (foam targets) and RPA has been predicted.

• Possibility for optical probing of overdense interactions.

For 532nm,  $n_{cr} \sim 4x10^{21}$  cm<sup>-3</sup> (easy transmitted through the gas jet)

# **BNL experiment with gas jet**



# **BNL experiment with gas jet**



### Wealth of non-linear phenomena observed

# Plasma filaments and solitons

#### simulation



#### experiment



Solitons expand and combine into post-solitons at the ion time scale





### **Hole boring by radiation pressure**



• Plasma discontinuity represents a shock with the critical surface moving at  $\sim I/n$ .

### Trend of increasing proton energy with *I*/*n*



- For opaque plasma  $(n>n_{cr})$ , the radiation pressure, P=2I/c, initially pushes plasma electrons into the target.
- Space charge field pulls along ions setting up an electrostatic shock moving at hole boring velocity  $v=(2I/\rho c)^{1/2}$

- Stationary ions in advance of the shock get accelerated by the same space charge field effectively bouncing off the shock front.\*
- Associated with it proton energy  $E = \frac{1}{2m}(2v)^2 = 4I/nc$
- \* PRL 92, 015002 (2004) PRL 93, 155003 (2004)

## **Narrow energy spread**



- Proton beams observed with consistently narrow energy spread.
- Deconvolution with spectrometer instrument function to determine energy spread of beams.
- Energy spread down to ~ 4%
  → significantly narrower than previously observed.
- ~ 2x10<sup>12</sup>protons/MeV/sr 1000 brighter than previous modulated spectra.
- Geometrical emittance
  ε=0.16 μm-rad
- Normalized emittance  $\varepsilon_n = \beta \gamma \varepsilon = 8 \text{ nm-rad}$

 $\rightarrow$ 

# Simulation



| Simulation           | Conditions:                |
|----------------------|----------------------------|
| Laser:               | Target:                    |
| a <sub>0</sub> = 0.6 | Ionised H <sub>2</sub>     |
| T <sub>L</sub> = 6ps | Triangular density profile |



- Peak energies expected to increase with increasing a<sub>0</sub>
- $a_0$  = 1.5 easily achievable by changing to faster focusing
- higher a<sub>0</sub> conceivable with planned laser upgrades

# **Additional investigations**

- As well as intensity scaling, we plan to measure:
- Angular distribution of ion beam
- Acceleration of different ion species
- Investigation of influence of double pulses
- Investigation of influence of polarization
- Investigation of micro-gas targets



