

High Gradient High energy gain Inverse Free Electron Laser

P. Musumeci UCLA Department of Physics and Astronomy

On Behalf of the RUBICON collaboration

ATF user meeting, BNL, October 6th 2010

Outline

- Radiabeam-UCLA-BNL IFEL COllaboratioN (RUBICON) experiment
- Most recent undulator design modifications
- Undulator construction status report
- Outlook and project schedule

A new era for Inverse Free Electron Laser Acceleration scheme

- 2004 IFEL experiments: UCLA Neptune, BNL STELLA 2
- IFEL : a mature advanced accelerator scheme
 - Control of longitudinal phase space (prebunching)
 - 1D acceleration scheme
 - Efficient energy transfer
- Towards a mid-high energy range compact injector.
 - Helical IFEL undulator interaction.
- Applications as ICS or FEL based light source driver.

Inverse Free Electron Laser Roadmap

- Renovated interest in IFEL acceleration scheme
- Applications as compact scheme to obtain 1-2 GeV electron beam for gamma ray (ICS) or soft x-ray (FEL) generation.

Radiabeam UCLA BNL IFEL Collaboration	LLNL-UCLA IFEL experiment	GeV IFEL experiment	
Strongly tapered optimized helical permanent magnet undulator ATF @ BNL	Reuse UCLA- Kurchatov undulator Use 5 TW 10 Hz Ti:Sa 50 MeV -> 150 MeV in 50 cm	If current experiments succesfull Looking for access to facility with 50 MeV beam+20 TW laser (BNL, LLNL, LNF-Italy) Praesodymium based cryogenic undulator	
0.5 TW CO2 laser 50 MeV -> 180 MeV in 60 cm	High rep rate allows beam quality measurement		
75 MeV energy gain 120 MV/m gradient		Initial energy	50 MeV
M_{b}		Final energy	1200 MeV
		Avg gradient	1.1 GV/m
		Final energy spread	1 %
		Laser wavelength	800 nm
		Laser power	20 TW
		Laser spot size (w ₀)	0.2 mm

Radiabeam Ucla Bnl IFEL COllaboratioN RUBICON

The experiment main goal is to achieve energy gain and gradient significantly larger than what possible with conventional RF accelerators to propose IFEL as a viable technology for mid-high energy range accelerators.

This can be achieved using		
the existing ATF e-beam and	Parameter	Fixed Value
high power CO2 laser	Initial <i>e</i> -beam energy	50 MeV
system	Laser wavelength	10 um
	Laser peak power	0.5 TW
TOGETHER WITH	Nominal length of wiggler, $L_{\rm w}$	60 cm
Helical geometry.	Rayleigh range	9 cm
	Laser focal spot size (w)	550 um
Permanent magnet double	Location of laser waist inside wiggler	30 cm
tapered undulator.	Undulator length	60 cm

Table 1. Parameters for BNL high gradient high energy gain IFEL experiment

Helical interaction

Planar undulator Helical undulator Energy gain Works at least two times better. 4-2-Interaction with circularly polarized laser is always ON 0.000 0.005 0.010 0.015 0.020 0.025 0.030 50.0µm-Factor ~2.3 extra gradient × ^{0.0m} -50.0µm 0.005 0.000 0.010 0.015 0.020 0.025 0.030 Distance along the undulator (m)

Planar

 $\frac{\partial \gamma}{\partial z} = kK_l \frac{JJ(K)}{2} \cdot \frac{K}{\gamma} \sin(\psi)$

VS.

Helical

 $\partial \gamma$ $= kK_l \cdot \frac{K}{-}\sin(\psi)$ ∂z .

Modified undulator tapering design

- Use commercially available NdFeB magnets. Br = 1.22 T
- Take into account not ideal laser transverse profile $M^2 = 1.5$
- Provide large enough gap (15 mm) to minimize laser losses
 - >98 % transmission to allow for recirculating schemes.

Permanent magnet helical undulator

Helical permanent magnet undulator.

- Prototype (30 cm long) built and measured at UCLA
- Measurements in very good agreement with simulation predictions.

Permanent magnet helical undulator optimization

- > Transverse magnet size ~ λ /4
- Gap 1.5 cm
- Need to put magnets close together -> Trapezoidal shape.

3D magnetostatic simulation

Use RADIA magnetostatic code Evaluate demagnetization field for each magnet. Mechanical forces under control.

400

Y

200

Х

600

Trajectory of particles within helical undulator

Need to choose end sections to minimize first and second integral Design for trajectory to oscillate around axis.

End section

Fully three dimensional simulations

- Focusing effects included using 3dimensional field map from RADIA.
- Non accelerated particles will be separated both in energy and transverse position/focusing.
- Next step. Include radiation field evolution.
 - Modified GENESIS version. In progress.
 - Beam loading effects
 - Phase front distortion for recirculation

(xpart, ypart, pzpart)

(pzpart, zpart, pzpart)

Mechanical design of undulator

- Design finalized
- Drafted and out to the machine shop
- Magnets have been ordered. Delivery in 40 days.
- Beam pipe ordered.
- Assembly and B-field measurements to start before the end of 2010.

Schedule

- Funding has been secured. DTRA + UCOP + DOE-HEP.
- Postdoc (R. Li) + graduate student (J. Duris) started working on project this summer.
- Undulator construction (next six months)
- Single pass IFEL acceleration scheme
 - Beam time required starting Spring 2011
- Recirculation scheme would be very important.
 - First advanced accelerator to show this.
 - Dramatic increase in wall-plug efficiency.
- Need to advance IFEL simulation capabilities.