High Resolution, high rate TOF R&D

S. White, BNL Physics 10/6/10

Growing interest in Nuclear and High Energy Physics in timing detectors with $\sim 10^{-11}$ sec time resolution. ie

- extension of particle identification to new kinematic region in PHENIX (we currently get $\sim 100$ psec@5m but space for detector in new region is $\sim 1/2$ m)

- pileup rejection at the LHC in forward physics (LHC bunch interaction rms=170 picosec and $N_{\text{interactions/bunch}} \sim 25@L=10^{34}$)

Lifetime and rate limit of current technologies a major issue

New progress in timing is now possible similar to Si tracking progress of last 20 years
Why is a 100 MeV, single electron, 3 picosecond beam interesting?

Deep diffused avalanche photodiode

650 picosecond risetime ($\beta$'s)

“A 10 picosecond time of flight detector using APD’s”, SNW et al.
Central Exclusive Higgs Production

Central Exclusive Higgs production $pp \rightarrow p\ H\ p : >3 \text{ fb (SM)}$
$\sim 10-100 \text{ fb (MSSM)}$

$$M_H^2 = (p + \bar{p} - p' - \bar{p}')^2$$

$\Delta M = O(1.0 - 2.0) \text{ GeV}$

Background suppressed by $0^+ \text{ selection rule}$

Higgs association from Proton timing ($\sim 10 \text{ picosecond}$)

Sunday, December 5, 2010
driver for faster timing @ LHC is leading protons @ \( L = 10^{34} \)

* encouraged (Brian Cox) to look for new technologies that survive full luminosity

* Hamamatsu (M. Suyama) provided a new device for evaluation. Lifetime tests show >250 Coulomb/cm² (cp. MCP, 20% loss @ 0.1 Coulomb). It has excellent timing performance.

Communications industry -> small area APDs w. \( G \times BW > 10^{11} \text{ Hz} \)
Applications in eg fluorescence spectroscopy
T. Tsang, S. White

risetime = 300 psec

### Temporal response

<table>
<thead>
<tr>
<th>$N_{pe}$</th>
<th>pulse height after preamp (V)</th>
<th>pulse height before preamp (mV)</th>
<th>normalised count rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.176</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.36</td>
<td>4.5</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>0.528</td>
<td>6.6</td>
<td>0.061</td>
</tr>
<tr>
<td>4</td>
<td>0.71</td>
<td>8.9</td>
<td>0.009</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>~0.0014</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>~0.0002</td>
</tr>
</tbody>
</table>
11 psec single photon response is not common. Below studies comparing LE, CFD, PicoHarp

\[ \sigma_{TOF} = \sqrt{\sigma_{HPD}^2 + \sigma_{radiator}^2 + \sigma_{electronics}^2} \]

\[ \sigma_{HPD} = \frac{\sigma_{TTS}}{\sqrt{N_{pe}^-}} = \frac{11 \text{ ps}}{\sqrt{N_{pe}^-}} \]
Deep diffused avalanche photodiode

Cerenkov Radiation cone

Cerenkov or APD option

Pre-production Hybrid photodetector

“A 10 picosecond time of flight detector using APD’s”, SNW et al.

Deep diffused avalanche photodiode

650 picosecond risetime (β’s)
more robust APDs

* Hamamatsu 5*5 and 10*10 mm (from KOPIO)

* Perkin Elmer APDs (provided by ALICE)

MCPs (Mickey Chiu has started to prepare these detectors, funded by PECAS)

The Plasma Panel Radiation Detector Development Project

...beating TVs into particle physics instrumentation since 2015

(not part of this proposal, possible interest in supplementary proposal)
Initial study of “start time” resolution from ATF stripline

Stripline waveforms w. on-chip Sin[x]/x interpolation+spline

RMS on time diff between detectors <2.5 psec

Victor Shestakov, at Moscow State University, had proposed a theory of electric switches based on Boolean logic a little bit earlier than Shannon, in 1935, but the first publication of Shestakov's result took place in 1941, after the publication of Shannon's thesis.

The theorem is commonly called the Nyquist sampling theorem, and is also known as Nyquist–Shannon–Kotelnikov, Whittaker–Shannon–Kotelnikov, Whittaker–Nyquist–Kotelnikov–Shannon, WKS, etc., sampling theorem, as well as the Cardinal Theorem of Interpolation Theory. It is often referred to as simply the sampling theorem.

The theoretical rigor of Shannon's work completely replaced the ad hoc methods that had previously prevailed.

Shannon and Turing met every day at teatime in the cafeteria. Turing showed Shannon his seminal 1936 paper that defined what is now known as the "Universal Turing machine" which impressed him, as many of its ideas were complementary to his own.

He is also considered the co-inventor of the first wearable computer along with Edward O. Thorp. The device was used to improve the odds when playing roulette.

* Spinoff: experience at ATF has been very useful. Led to signal reconstruction algorithm for ATLAS ZDC. Now fastest detector in ATLAS (<100 psec)
In 1956 two Bell Labs scientists discovered the scientific formula for getting rich. One was the mathematician Claude Shannon, neurotic father of our digital age, whose genius is ranked with Einstein’s. The other was John L. Kelly, Jr., a gun-toting Texas-born physicist. Together they applied the science of information theory—the basis of computers and the Internet—to the problem of making as much money as possible, as fast as possible. Shannon and MIT mathematician Edward O. Thorp took the “Kelly formula” to the roulette and blackjack tables of Las Vegas. It worked. They realized that there was even more money to be made in the stock market, specifically in the risky trading known as arbitrage. Thorp used the Kelly system with his phenomenally successful hedge fund Princeton-Newport Partners. Shannon became a successful investor, too, topping even Warren Buffett’s rate of return and
Reconstruction of ZDC Pre-Processor Data and its timing Calibration
Soumya Mohapatra, Andrei Poblaguev and Sebastian White
Aug.8,2010

ATLAS data set used to develop ZDC reconstruction and do L1calo calibration (in Mathematica 7.0)

\[
\text{shannon}[t] = \sum_{i=1}^{n_{\text{slic}}e} \text{slice}[i] \times \text{Sinc}[\pi \times (t - \text{time}(i))/25]]
\] (6)

An animated gif can be found at:
http://www.phenix.bnl.gov/phenix/WWW/publish/swhite/ShannonFilm.gif

Sinc Expansion for 2 Slices

<table>
<thead>
<tr>
<th>time(nanoseconds)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(d) Piecewise fit to the full range.
Dear Sebastian,

I have not yet contacted Tony as I also have been swamped with other tasks. One potential issue of concern is that CERN ROOT is available under the Lesser General Public License (http://root.cern.ch/root/License.html). As I understand it (and I’ll have this clarified by our legal department), we can not make use of any ROOT source code without exposing the Mathematica source code (which obviously is not an option). If true, this hurdle may be bigger than any technical problems we may face.

Ken

(I then held discussions with Brun and Rademaker at CERN, who were enthusiastic.)

Hello Sebastian,

I am sorry about the silence these days as I am still waiting on words from our legal department. I feel that it is best that I respond once I have any news on this front. In the mean time, I am taking the assumption that all will be legal, and have actually started to implement some items.

We are also very, very close to release here, and all our efforts are dedicated to it now. However, you can be assured that once Mathematica 8 is released, this will be a the first Mathematica 9 project I undertake.

Ken
Objectives

• we will evaluate performance of our timing detectors (all in hand)
• really a factory for new ideas in fast timing
• for photodetectors (HAPD and MCP) will follow path of Inami et al and Va’vra- timing resolution vs radiator thickness for proximity focused geometry
• depending on collaborator interest, will evaluate a radiator design specific to PHENIX upgrade
BACKUP