

First observation of Current Filamentation Instability (CFI)

ATF User Meeting

May 26, 2012

Brian Allen –

PI - Patric Muggli: University of Southern California

Vitaly Yakimenko, Mikhail Fedurin, Karl Kusche,

Marcus Babzien: Brookhaven National Laboratory

Joana Martins, Luis O. Silva: Instituto Superior

Técnico

Warren Mori: University of California Los Angeles

Chengkun Huang: Los Alamos National Laboratory

Work supported by DoE and NSF

Agenda

- Overview
- PIC Simulations
- Experiment
 - Setup
 - Results
- Conclusion

Current Filamentation Instability (CFI)

What is CFI?

- Particle beam transport in plasmas is subject to Current Filamentation Instability (CFI)
- CFI results in breakup of the beam into narrow high current filament
- Enhances/generates magnetic fields and generates radiation

Why is it interesting?

- Basic plasma instability
- Potential relevance to Astrophysics and Inertial Confinement Fusion (ICF)

Afterglow of gamma ray bursts

Hot electron transport for Fast Igniter -ICF

Characteristics of CFI

Characteristics

- Particular case of the Weibel instability⁽¹⁾ (Temperature anisotropy)
- Plasma return current
 - $\sigma_r > c/\omega_{pe}$ flows through beam, CFI regime
 - $\sigma_r << c/\omega_{pe}$ return current outside beam, PWFA wakefields
- Purely transverse electromagnetic instability of relativistic beams purely imaginary frequency

How it occurs

- Non-uniformities in the transverse beam/plasma profile lead to unequal opposite currents (beam and plasma) and magnetic fields
- Opposite currents repel each other, leading to instability and filamentation

Effects

- Beam filaments
- Plasma density perturbations
- Magnetic field enhancement (or generation)
- Radiation generation

Criteria for CFI

Criteria for CFI

- $\sigma_r >> c/\omega_{pe} (k_p \sigma_r >> 1)$
- $\gamma_0 >> 1$

Filament size and spacing $\sim c/\omega_{pe}$

Growth rate⁽¹⁾ (infinite transverse size):

$$\Gamma = \beta_0 \sqrt{\frac{\alpha}{\gamma_0}} \omega_{pe} \text{ or } \Gamma = \beta_0 \omega_{pb} / \sqrt{\gamma_0} \sim n_b \sim Q/(\sigma_r^2 \sigma_z)$$

 $\sigma_{\rm r}$ - Transverse beam size, $\sigma_{\rm z}$ - bunch length, $\rm n_{\rm e}$ - plasma density, $\rm n_{\rm b}$ beam density

Q - beam charge, c - speed of light in vacuum, γ_o - relativistic beam factor

Plasma-electron angular frequency: $\omega_{pe} = (n_e e^2/\epsilon_o m_e)^{1/2}$

Collisionless skin depth: $k_p^{-1}=c/\omega_{pe}$

Ratio of beam to plasma density: $\alpha = n_b/n_e$

(1)Bret et al., Phys. Rev. Lett. 94, 115002 (2005)

CFI with ATF Beam

ATF Beam Parameters	
Parameters	Value
Charge (nC)	1.00
Typical Bunch Transverse Waist Size - $\sigma_{0x,y}$ (μ m)	50 to 100
Bunch Length (ps)	5
Bunch Density (cm ⁻³)	6x10 ¹³
Energy (MeV)	58
Normalized Emittance (mm-mrad)	1 to 2(?)

- $\gamma_0 = 117$
- Growth length estimate:

$$\Gamma$$
=4.2x10¹⁰ s⁻¹ or 7.1 mm at *c*

$$\gamma_0 >> 1$$
, $\sigma_{0y} >> c/\omega_{pe}$ for $n_e > 1.6 \times 10^{16}$

CFI should be observable on a cm-length plasma scale

(plasma length,
$$L_p = 2$$
 cm)

PIC Simulations – Transverse Images

- Size and number of filaments scales with c/ω_p
- Merging of filaments

PIC Simulations – Growth Rate

Theory

- For infinite transverse size: Γ~n_b^{1/2}
- Independent of n_e
- Simulations
 - Dependence on n_e
 - Earlier saturation

Experiment

Experiment on BL #1 – Compton Chamber 1 - 24HI-BAY AREA C3 1-18 S 160. 1-26 месн. LADIES 1-26A 1-25 XPERIMENTAL HALL CONTROL RM. ROOM MEN OFFICE OFFICE

A.T.F. FACILITY OFFICES

TRAILER #356

A.T.F. FACILITY OFFICES

TRAILER #355

Direct Filament Imaging

- Micron resolution of transverse bunch
 - Si-window low scattering, terminates plasma
 - Au coating for Optical Transition Radiation Generation
 - Resolution 3.9μm/line (USAF 1951 Target 50% MTF)

1024 ProEM Princeton 60 MeV Linac Insturments Si/Au Window $_{Ca\underline{pill}ary}\;H_2\; Gas$ **Turning EMCCD** Microscope Mirrors Camera Objective OTR \rightarrow e-^lTungesten 15kV Beam Stop

Summary

- Designed imaging system for transverse bunch size measurement with micron resolution
- CFI observed and studied at the ATF
 - Transverse imaging of multiple (1-5) filaments
 - Multiple filaments observed for k_pσ_{0y}>2.2 (theory k_pσ_r>1)
 - Filament size and position vary event to event
 - Scaling of filament size with plasma skin depth
 - Suppression of CFI with reduced charge (Γ~n_b^{1/2})
 - Focusing for $k_p \sigma_r << 1$

Paper in preparation

THANK YOU ATF!

FOCUSING?

- Red High Charge (1.0nC)
 - σ_{0x} =80 μ m, σ_{0y} =53 μ m
- Blue Low Charge (0.54nC)
 - σ_{0x} =95 μ m, σ_{0y} =49 μ m

 Similar trends but scaling with charge!

