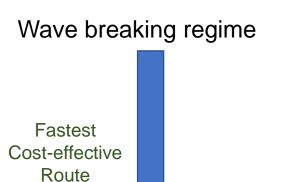
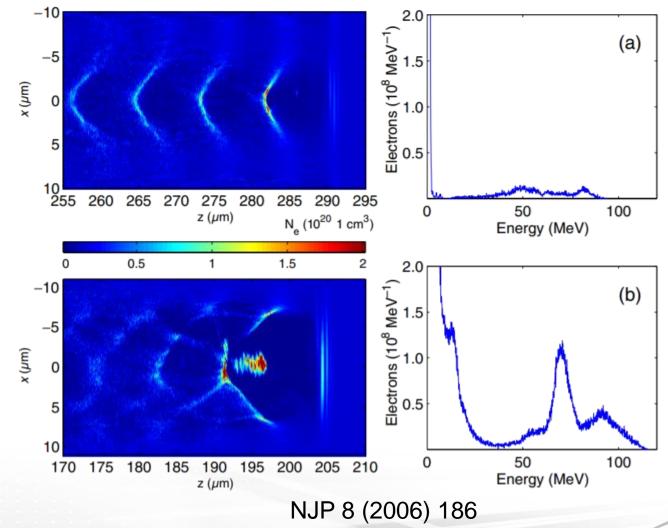
23nd ATF Users' Meeting
December 7, 2020

308053 - Development of wavelength conversion techniques for generation of coherent radiation at the mid to long-wave infrared


R. Kupfer¹, J. Wishart¹, T. Rao¹, M. Babzien¹, M. Polyanskiy¹, I Pogorzelski¹, M. Fedurin¹, K. Kusche¹ and M. Palmer¹

¹Brookhaven National Laboratory *BNL-LDRD grant #20-001

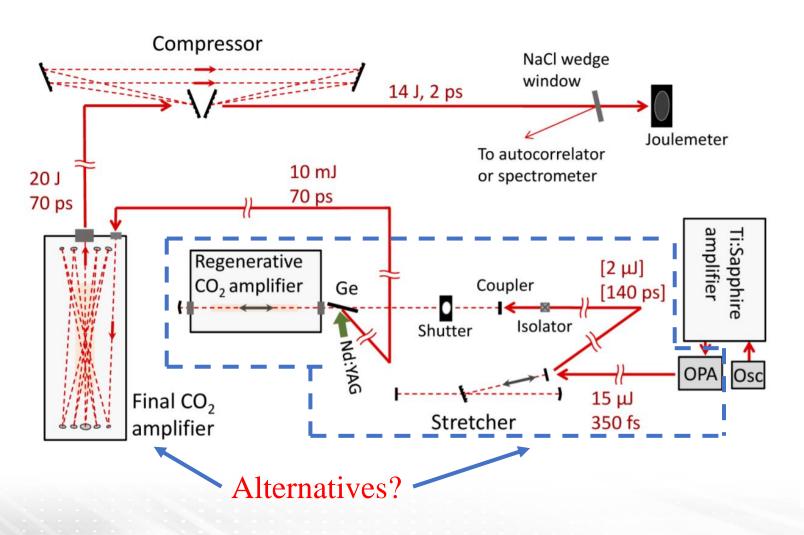
The Accelerator Test Facility

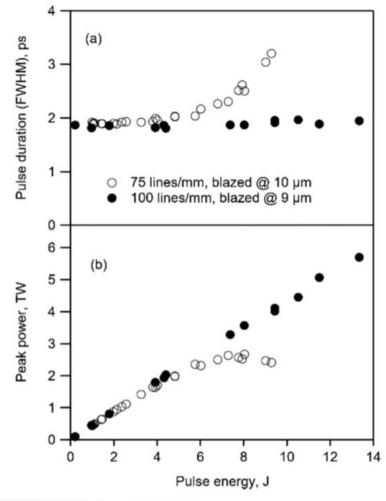


Blowout (bubble) regime

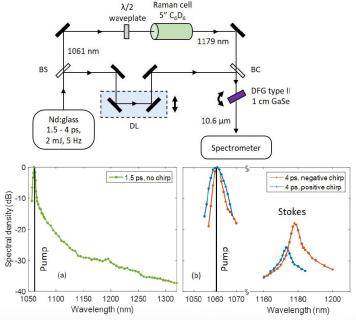
$$T_p = \frac{\omega_p \tau_{laser}}{2\pi a_0^{1/2}} < \frac{1}{2}$$

Game changer Optical injection





Cost effective, Raman Wide bandgap mJ level, broadband, chirped LWIR mature & currently converters seed for direct amplification in the nonlinear crystal available sources current final amplifier High energy, ns, mid-IR pulses for optical pumping of CO₂ amplifier ATF Ti:Sa



Long-wave infrared picosecond parametric amplifier based on Raman shifter technology

E. C. WELCH, S. YA. TOCHITSKY, J. J. PIGEON, AND C. JOSHI

Neptune Laboratory, Department of Electrical Engineering, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095

 $10~\mu m$ Fresnel losses. With this setup, we generated $3~\mu J$ of $10~\mu m$ light—an external energy conversion efficiency of 0.15% from the Nd:glass pump. A phase-matching curve for the internal

Development of a dual-wavelength Ti:sapphire multi-pass amplifier and its application to intense mid-infrared generation

J.F. Xia*, J. Song, D. Strickland

Physics Department, Guelph-Waterloo Physics Institute, University of Waterloo, Ont., Canada N2L 3GI Received 21 December 2001; accepted 28 February 2002

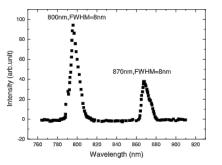


Fig. 4. Two colour spectra from the multi-pass amplifier.

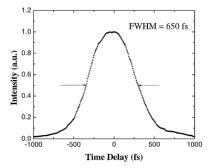


Fig. 8. Single shot cross correlation of mid-infrared radiation and 800 nm radiation.

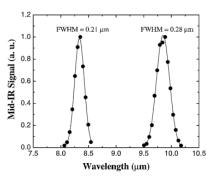
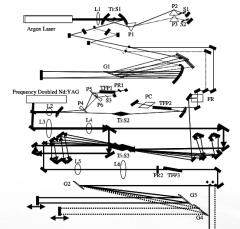
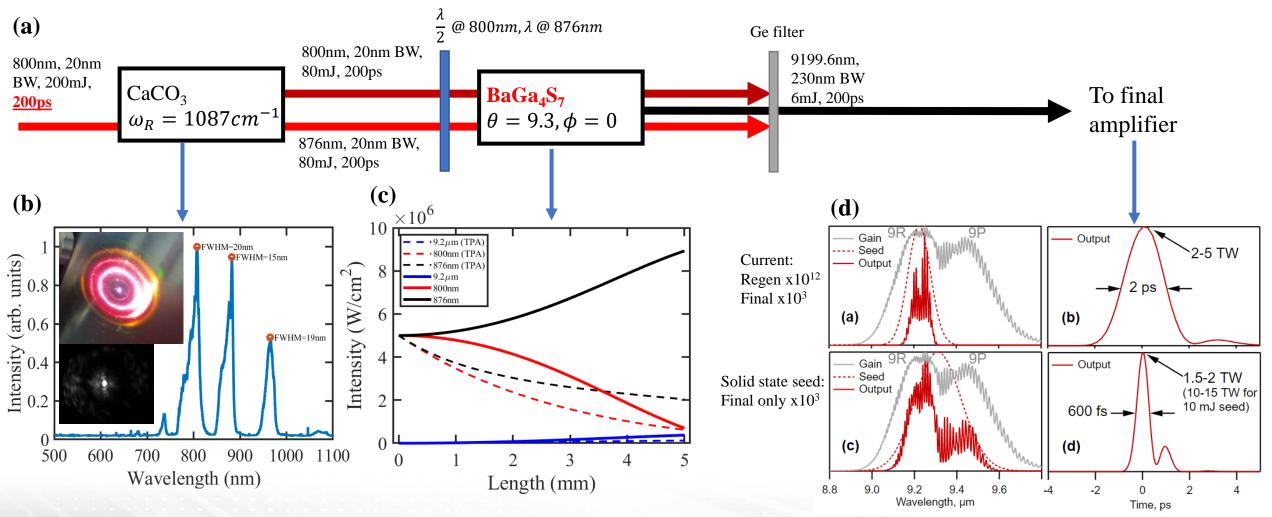
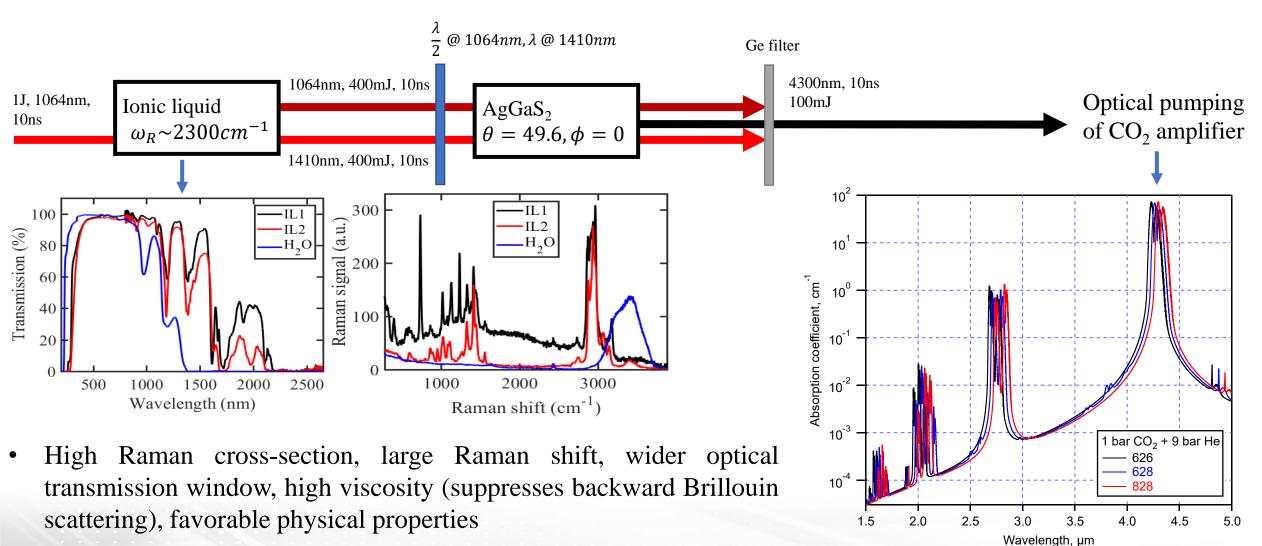



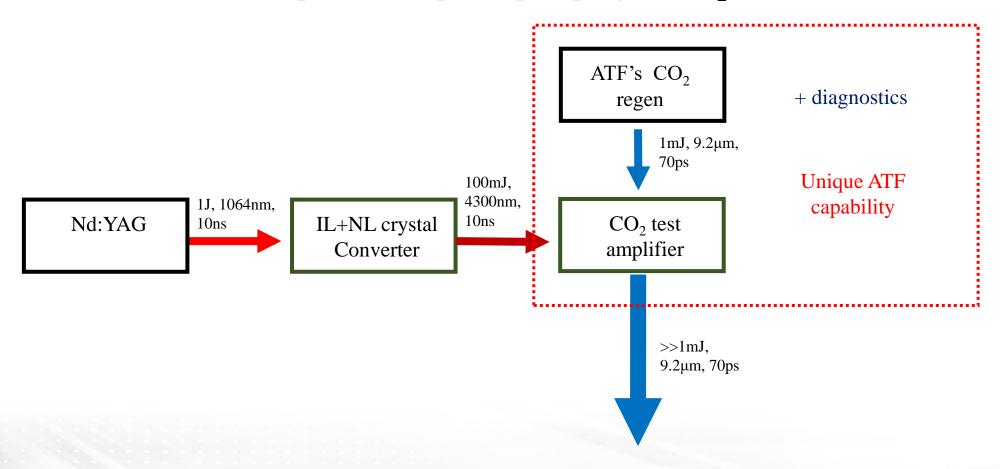
Fig. 7. Mid-infrared spectra generated by the difference frequency mixing of 800 nm short wavelength radiation and 870 or 885 nm long wavelength radiation.

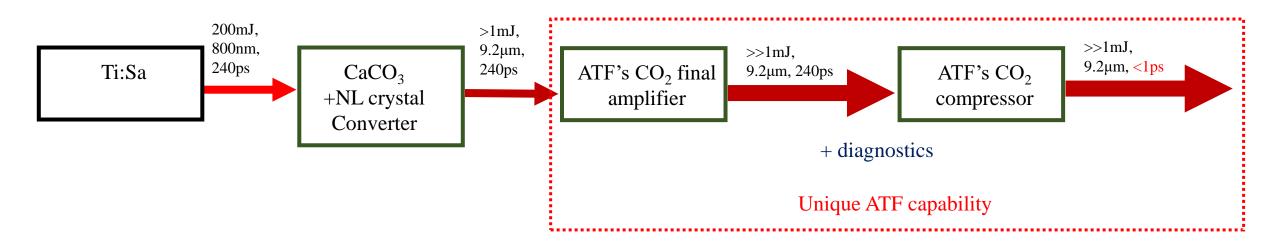

at 800 nm and 885 nm. A 6.6 µJ mid-infrared output was achieved at this wavelength with 3.0 mJ total pump energy, corresponding to a total photon conversion efficiency of 2.1%.

As previously reported, two photon absorption effect caused ~47% absorption of the intensity transmitted into the crystal, which limits the power scaling ability of the mid-infrared generation. That

Fig. 1. Dual-wavelength multi-pass amplifier setup. Ti:S1-3, Ti:sapphire laser crystals; L1-6, lenses; P1-6, prisms; S1-3, slits; G1-4 gratings, 1200g/mm; TFP1-3, thin film polarizers; PR1-2, polarization rotators; FR, Faraday rotator; PC, Pockels cell.




Higher peak power can be achieved by reducing pulse duration while maintaining the same energy


Beam time request #1: Optical pumping of CO₂

Beam time request #2: Solid-state, broadband LWIR source

Work in progress:

- Detailed and systematic study of the optical properties of ionic liquids with different functional groups
- Growth and fabrication of large, laser grade, single crystal BGS
- Initial testing & construction of prototypes will be performed off-line
- Beam time is needed to test seeding of CO₂ final amplifier and optical pumping of CO₂

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	N/A
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	N/A
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	N/A
Transverse size at IP (σ)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	N/A
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	N/A
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	N/A
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	N/A

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		Chirped
	Pulse Energy	mJ	6		>1mJ
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	1.5
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	2	~5 TW operation is planned for FY21 (requires further in-vacuum transport upgrade). A 3-year development effort to achieve >10 TW and deliver to users is in progress.	N/A
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available in FY20	
	M ²		~2		
	Repetition Rate	Hz	0.05		
	Polarization		Linear	Adjustable linear polarization along with circular polarization will become available in FY20	

Near IR Experimental Laser Requirements

incai in Experimental Laser negalientes					
Ti:Sapphire Laser System) Units	Stage I Values	Stage II Values	Comments Requested Va	
Central Wavelength	nm	800	800	Stage I parameters have been delivered, while Stage II parameters will be available for user experiments once our vacuum transport installation is complete (now planned for FY21 after COVID-19 delays)	800
FWHM Bandwidth	nm	20	13		15
Compressed FWHM Pulse Width	fs	<55	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	chirped
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	>30	200		200
Compressed Energy	mJ	>14	100		N/A
Energy to Experiments	mJ	>10	>80		
Power to Experiments	GW	>250	>1067		
Nd:YAG Laser System	Units	Typical Values	2021 Modifications	Comments	Requested Values
Wavelength	nm	1064	1064	Single pulse	
Energy	mJ	5	100		
Pulse Width	ps	14	<20		
Wavelength	nm	532		Frequency doubled	1

Energy

Pulse Width

0.5

10

mJ

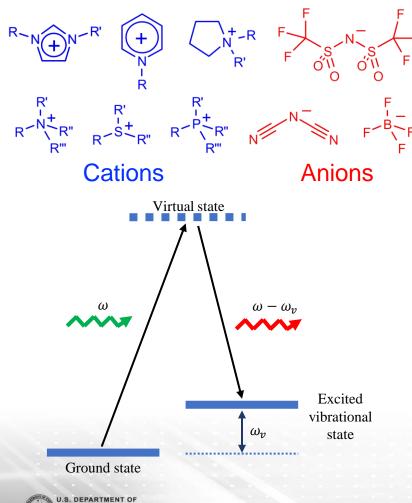
ps

Special Equipment Requirements and Hazards

- Electron Beam
 - N/A
- CO₂ Laser
 - Regen only / final amp only
- Ti:Sapphire and Nd:YAG Lasers
 - Chirped pulses
- Hazards & Special Installation Requirements
 - Generation of new wavelengths

Experimental Time Request

CY2021 Time Request


Capability	Setup Hours	Running Hours
Electron Beam Only	N/A	N/A
Laser* Only (in Laser Rooms)	N/A	40Hr in CO ₂ room
Laser(s)* + Electron Beam		

Time Estimate for Remaining Years of Experiment (including CY2021)

Capability	Setup Hours	Running Hours
Electron Beam Only	N/A	N/A
Laser* Only (in FEL Room)	N/A	120
Laser(s)* + Electron Beam		

^{*} Laser = Near-IR or LWIR (CO₂) Laser

Ionic liquids have desirable properties and should be tunable for a specific shift.*

- ✓ Longer Raman shifts compared to solids.
- ✓ * Tunability: Ions can be selected for their Raman properties.
- ✓ Aromatics, double and triple bonds have high Raman cross sections.
- ✓ Higher IL viscosities reduce Brillouin scattering (scales inversely with viscosity)
- ✓ Viscosity can be controlled independently by changing R groups without affecting the vibrational spectroscopy.
- ✓ Many ILs have wide optical transmission windows.
- ✓ Many ILs have thermal stabilities above 300 °C in closed systems.
- This research addresses the core interests of the BES Condensed Phase and Interfacial Molecular Science (CPIMS) Program: "basic research at the boundary of chemistry and physics, pursuing a molecular-level understanding of chemical, physical, and electron- and photon-driven processes in liquids."

