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Background: Long range radiation 
detection scheme
• Laser-driven avalanche breakdown in a radiation field 

propagated from outside the range of the decay particles
• Need Mid-IR to Long wave IR laser to suppress 

Multiphoton ionization of neutrals in air
• Measure reflected laser light characteristics to determine 

breakdown timing

source

particle 
range
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Background: Short Pulse IR Avalanche Breakdowns
• Avalanche breakdowns are local

• Centered around seed electrons
• Bounded by diffusion during pulse

• Discrete plasma sites
• Discontinuous plasma density
• Each site surrounded by neutrals

Discrete model necessary for:
• λ>2µm
• τp<1ns

• Short λ
• Enough unwanted MPI seed electrons 

that their separation is smaller than the 
diffusion length

• Long τp
• Enough time that the diffusion length is 

greater than the seed separation.

5 mm

Short pulse:
100 ps, λ=4 µm  

Long pulse:
100 ns, λ=10.6 µm  
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Background: Short Pulse IR Avalanche Breakdowns

Electron motion is limited by diffusion, leading to discrete countable sites
    𝑟𝑟𝑑𝑑~ 2𝑘𝑘𝐵𝐵𝑇𝑇/𝑚𝑚𝜈𝜈𝑒𝑒𝑒𝑒=≈ 0.3 𝜏𝜏 ps  𝑇𝑇𝑒𝑒 [eV]) μm 
                                                                                
                                                                              

What this looks like experimentally:

𝑟𝑟𝑑𝑑
𝑟𝑟𝑑𝑑 < 𝑁𝑁𝑒𝑒

−13

1 mm
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Background: Proof-of-Concept Experiments
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Pump pulse:
50 ps, 3.9 𝜇𝜇m 15-35 mJ focused 
1m at f/33
20Hz

-R. M. Schwartz, D. Woodbury, J. Isaacs, P. Sprangle, and 
H. M. Milchberg, Sci. Adv. 5, eaav6804 (2019)
-D. Woodbury R. M. Schwartz, and H. M. Milchberg, 
Optica 6 (6) (2019)
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AE122 07/2022: Experimental Setup
• λ = 9.2 µm, 70 ps FWHM duration, 50 mJ - 1 J energy range
• Diagnostics: backscatter photodiodes (MCT) ~ns time resolution, images of 

plasma fluorescence
• ~f/200 geometry: 2.1 mm FWHM beam waist diameter, ~2 m Rayleigh 

range, 0.21 TW/cm2 breakdown threshold 
Po-210~10 m

Fluorescence imager

~2 m
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AE122 07/2022: 
Fluorescence images

Source covered with foil Source uncovered

2 cm

2 cmPo-210

Laser path

2 cm
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AE122 07/2022: 
Fluorescence images
• Image taken at ~40 inches from focus with 1.5” collection lens
• Scaled back to 10 m this would require a ~12” collection optic
• Readily reproduce this image at 10 m standoff distance
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AE122 07/2022: Amplified back-reflection diagnostic

• Laser path shown below 
• Gain lifetime of CO2 is ~1 µs. Back reflected light is amplified by the laser and 

detected by in-situ regenerative amplifier energy monitor (MCT)

Back reflection MCT 
(~48 m upstream)

Plasma mirror

Regenerative 
amp

Final 
Amp

Po-210
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AE122 07/2022: Amplified back-reflection diagnostic

• Gain lifetime of CO2 is ~1 µs. Back reflected light is amplified by the laser and 
detected by in-situ regenerative amplifier energy monitor (MCT)

• Temporally resolved (~1 ns), not spatially resolved
• Sample trace: Regen 

build-up

Plasma back
reflection

Beam dump 
back reflection

316 ns

corresponds to ~48 m from 
plasma to MCT
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• Move source along laser propagation 
direction, keeping transverse distance 
constant

• Temporal profile of back reflection 
indicated position of source 
− i.e. source moved 2 ft, spike in back 

reflection shifted 4 ns.

AE122 07/2022: Source longitudinal position scan

M
CT
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24 in
Increased signal due 
to Po-210

Laser propagation direction
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AE122 07/2022: Results

• Mean of peak voltage on MCT
• Increase as the source gets closer 

to the peak intensity
• Appears to distinguish presence of 

Po-210 at 50 m path
• Near background level when source 

is placed at 0 in, near the edge of 
the focal volume

• Downstream of best focus was 
inaccessible in the experimental 
configuration

Laser propagation direction

0 in 50 in
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AE122 07/2022: Conclusions

• Successfully distinguished presence of Po-210 with time resolved MCT 
detectors at >10 m using direct back reflection. 

Insights:
• Direct back-reflection into the laser amplifier can serve as a self-aligned, high 

sensitivity diagnostic
− Po-210 only irradiated ~1% of focal volume, γ-source should significantly improve 

signal level by irradiating larger fraction of focal volume 
− Possibly install a spectrometer instead of a single MCT detector
− Need to understand integrated back reflection signal as a function of seed density 

from a 2 m long focal volume, which will include multiple scattering
• Long focusing geometry (f/200) could readily be extended to 100 m scale
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Proposal 312793: Propagation range

• Extend propagation length to 50 - 100 meters
• Use 0.5 m diameter focusing optic for f/200 geometry (same as AE122 

experiment)

Arial photo of 
ATF facility

CO2 laser 
room

High-bay Possible Laser paths
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Proposal 312793: Radioactive source

• Irradiate ~2.5 m long focal volume (70 mCi Cs-137 source available at BNL)

~3 cm with elevated seed density

Po-210
5.3 MeV α-particles, 3 mCi

Cs-137
662 keV γ-rays, 70 mCi

*much larger range of γ-rays allows the 
source to generate seed ions over the 
full focal volume 

AE122 setup

Improved irradiated 
volume for Proposal 
312793 
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Proposal 312793: Diagnostics

• Amplified back-reflection MCT photodiode
− Propagation and back-reflection total “time-of-flight” ~668 ns for 100 m propagation
− May require focusing onto 1 mm2 MCT photodiode to increase signal, If signal 

strength falls as r −2, then collection area will need to increase by 100x going from 10 
m to 100 m propagation. >100 mm2 collection lens will be required to maintain signal 
level

• Non-normal back-reflection MCT that will be placed at various stand-off 
distances

• Optical telescope to measure the plasma fluorescence at various stand-off 
distances
− Brightness of plasma fluorescence goes with the number of individual breakdown 

sites. Cs-137 will produce 103 – 104 times the number of seeds over the entire focal 
volume
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Proposal 312793: Experimental Schematic

CO
2 

am
pl

ifi
er

Cs-137 
70 mCi

~10 cm

• Beam focused using telescope 
− 0.15 m diameter expansion optic (-4 m focal length)
− 0.5 m diameter focusing optic (+8 m focal length)
− Spacing tuned to generate focus at 50 – 100 m 

• Not shown: Amplified back-reflection MCT 
photodiode is in the laser chain and used to 
monitor pass-by-pass regenerative amplifier 
output

Breakdown plasma

off-normal MCT photodiode and collection optic

~4 m

8 m spherical 
mirror

-4 m spherical 
mirror

Optical telescope 

High magnification 
fluorescence imager
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Proposal 312793: Experimental Schedule

Experiment Goals/milestones
Demonstrate detection 
of radioactive material 
at 50 - 100 m range (3 
weeks, 25% dedicated to 
setup)

• Optics setup for 50 - 100 m range experiments
• Calibrate and optimize the backscatter spectrum diagnostic
• Calibrate fluorescence telescope and noise level in outdoor and 

indoor conditions. 
• Measure seed density as a function of source distance and validate 

models for γ-ray sources. 
• Demonstrate detection of radioactive material at 100 m



Parameter Units Typical Values Comments Requested Values

Beam Energy MeV 50-65 Full range is ~15-75 MeV with highest beam quality at nominal values N/A

Bunch Charge nC 0.1-2.0 Bunch length & emittance vary with charge N/A

Compression fs Down to 100 fs 
(up to 1 kA peak 

current)

A magnetic bunch compressor available to compress bunch down to 
~100 fs. Beam quality is variable depending on charge and amount of 
compression required. 

NOTE:  Further compression options are being developed to provide 
bunch lengths down to the ~10 fs level

N/A

Transverse size at IP 
(σ)

µm 30 – 100 
(dependent on 

IP position)

It is possible to achieve transverse sizes below 10 um with special 
permanent magnet optics.

N/A

Normalized Emittance µm 1 (at 0.3 nC) Variable with bunch charge N/A

Rep. Rate (Hz) Hz 1.5 3 Hz also available if needed N/A

Trains mode --- Single bunch Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches. N/A

Electron Beam Requirements



Configuration Parameter Units Typical Values Comments Requested Values

CO2 Regenerative Amplifier Beam Wavelength µm 9.2

Peak Power GW ~3

Pulse Mode --- Single

Pulse Length ps 2

Pulse Energy mJ 6

M2 --- ~1.5

Repetition Rate Hz 1.5

Polarization --- Linear

CO2 CPA Beam Wavelength µm 9.2 9.2

Note that delivery of full power 
pulses to the Experimental Hall is 
presently limited to Beamline #1 
only.

Peak Power TW 5 ~10 GW

Pulse Mode --- Single Single

Pulse Length ps 2 Uncompressed pulse duration desired ~70 ps

Pulse Energy J ~5 <5 J

M2 --- ~2 ~2

Repetition Rate Hz 0.05 0.05 Hz

Polarization Linear Adjustable linear polarization along with circular 
polarization can be provided upon request

Linear

CO2 Laser Requirements



Ti:Sapphire Laser System Units
Stage I 
Values

Stage II 
Values Comments Requested Values

Central Wavelength nm 800 800 N/A

FWHM Bandwidth nm 20 13 N/A

Compressed FWHM Pulse 
Width fs <50 <75

N/A

Chirped FWHM Pulse 
Width ps ≥50 ≥50 N/A

Chirped Energy mJ 10 200 N/A

Compressed Energy mJ 7 ~20 N/A

Energy to Experiments mJ >4.9 >80 N/A

Power to Experiments GW >98 >1067

Other Experimental Laser Requirements

Nd:YAG Laser System Units Typical Values Comments Requested Values

Wavelength nm 1064 N/A

Energy mJ 5 N/A

Pulse Width ps 14 N/A

Wavelength nm 532 N/A

Energy mJ 0.5 N/A

Pulse Width ps 10 N/A



Special Equipment Requirements and Hazards

• Electron Beam
• N/A

• CO2 Laser
• Access to uncompressed 70 ps pulse with <5J energy
• Extended propagation range (outside laser/accelerator rooms), along with 

necessary beam enclosure according to BNL safety regulations. 
• Ti:Sapphire and Nd:YAG Lasers

• N/A
• Hazards & Special Installation Requirements

• 50 ‐ 100 meter propagation range, indoor or outdoor interaction site
• Equipment: Routing and focusing optics
• Hazards: BNL owned 70 mCi Cs‐137 source



Experimental Time Request

Capability Setup Hours Running Hours

Electron Beam Only

Laser* Only (in Laser Areas) 40 120

Laser* + Electron Beam

CY2023 Time Request

Capability Setup Hours Running Hours

Electron Beam Only

Laser* Only (in Laser Areas) 120 360

Laser* + Electron Beam

* Laser = Near-IR or LWIR (CO2)  Laser

Total Time Request for the 3-year Experiment  (including CY2023-25)
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