

ATF User's Meeting 26-28 March 2024

Toward bubble-regime CO₂-laser-driven wakefield acceleration*

PI: Mike Downer, University of Texas at Austin

Collaborators:

University of Texas at Austin:

Faculty: M. C. Downer Research Scientist: R. Zgadzaj PhD students: Y. Cao, B. Dinh, T. Araujo

UCLA: Faculty: C. Joshi

Stony Brook University:

Faculty: Navid Vafaei-Najafabadi Roman Samulyak V. N. Litvinenko *Postdoc*: N. Pathak PhD Students: A. Cheng, A. Gaikwad, B. Romasky, E. Trommer

Brookhaven NL:

ATF Director: M. A. Palmer Research Scientists: M. Babzien, M. Fedurin, R. Kupfer, K. Kusche, W. Li, I. V. Pogorelsky, M. N. Polyanskiy

optical diagnosis emphasis (complementary to Navid's electron radiography emphasis)

Main Group Funding: US Department of Energy grant DE-SC0014043 (received thru 2025) Additional Individual Support: DE-SC0011617 (UT-Austin); DE-SC0012704 (BNL)

Goal: develop LWFAs that routinely produce e-beams with $\Delta E_e/E_e$ and \mathcal{E}_n low enough to drive XFELs

Key ingredients: *1) Large plasma bubbles ($R_b \gtrsim 0.3 \text{ mm}$) $\Rightarrow n_e \lesssim 10^{16} \text{ cm}^{-3}$

**2) External injection of low $\Delta E_e/E_e$, low \mathcal{E}_n e-bunches

* Efficiently excited by LWIR laser pulses uniquely realizeable at ATF

• Pogorelsky et al., Phys. Rev. Accel. Beams 19, 091001 (2016); Kumar et al., Phys. Plasmas 28, 013102 (2021)

** Synchronized, compressed ATF linac bunches uniquely enable 1st-generation experiments.

The Proposed Project builds upon AE71 and AE95 success.

Project #	CO ₂ laser parameters	Main results	
AE-71	2 J, 4 ps, 0.5 TW, 10.3 μm	• Generation, characterization of self-modulated (SM) wakes. No electrons.	
AE-95	4 J, 2 ps, 2 TW, 9.2 μm	• Self-injected MeV electrons produced at $n_e \gtrsim 3 \times 10^{16} \text{ cm}^{-3}$ [1] • Quasi-monoenergetic, collimated features observed.	[
Proposed Project	5-20 J, < 2 ps, 5-20 TW	• Excite, characterize $R_{\rm b} \sim 0.3$ mm bubbles at $n_{\rm e} \sim 10^{16}$ cm ⁻³ w/o self-injection • Inject e ⁻ from ATF linac, characterize $\Delta E_{\rm e}/E_{\rm e}$ and $\mathcal{E}_{\rm n}$	

[1] Predicted by Kumar et al., Phys. Plasmas 26, 083106 (2019)

[2] Zgadzaj et al., Nat. Comms., in press (2024)

Year 1-2 Scientific Goals

UTexas team: Dr. R. Zgadzaj, PhD student B. Dinh

Constraints: • CO₂ laser at or near current parameters: (4 – 10 J, 2 ps, 2 - 5 TW)

• No linac e-beam needed (Navid's group is developing e-beam probes)

• Ti:S probe laser at current parameters

• Use existing AE95 infrastructure (gas jet, magnetic spectrometer, etc.)

1) Discover low- n_e , high- P_L limits of self-injected LWIR-driven WFA.

- Can we reach the full bubble regime while still self-injecting?
- In AE95 (4 J, 2 ps) we observed collimated quasi-monoenergetic electrons only at $n_e = 4 \times 10^{17}$ cm⁻³. We generated electrons down to $n_e = 3 \times 10^{16}$ cm⁻³, but did not have time to spectrally analyze them. Will quasi-monoenergetic component strengthen for $n_e < 4 \times 10^{17}$ cm⁻³ and $P_1 > 2$ TW?

• Widen experimental conditions: $H_2 \rightarrow$ He target; lin \rightarrow circ pol drive pulse; downramp & ionization injection

• Understand self-injection limits thru simulations (with Samulyak).

Year 1-2 Scientific Goals (cont'd)

2) Upgrade optical diagnostics of wakes in low-n_e plasma

(complement e-beam probes that Navid's group is leading)

 Apply collective Thomson scatter (CTS) probe during e⁻ acceleration (AE95: only empty wakes probed) ⇒ observe beam-loading effects on wake structure & dynamics.

2) Upgrade CTS sensitivity to $10^{15} < n_e < 10^{17} \text{ cm}^{-3} \text{ plasmas}$, using spatial-spectral filtering techniques developed at UCLA. Filip et al., "CTS diagnostic system for detection of relativistic waves in low-density plasmas," *Rev. Sci. Instrum.* **74**, 3576 (2003) (AE95: CTS used only for $n_e \ge 4 \times 10^{17} \text{ cm}^{-3}$)

- 3) Add a transverse CTS probe to complement current co-propagating probe ⇒ diagnose wake evolution due to self-focusing, mismatched propagation, wake formation, electron injection, and beam loading.
- 4) Augment current $\lambda = 1 \ \mu m$ probe with $\lambda = 3, 5 \ \mu m$ probes derived from 3rd, 2nd harmonics of split-off CO₂ pulses generated in AgGaSe₂ crystals \Rightarrow improve sensitivity to low-n_e plasma structures, eliminate pu-pr timing jitter. Detect with cooled InGaAs or InSb CCD camera.

- upgraded CTS + Faraday probes
- longitudinal + transverse probes
- 1 µm + 3, 5 µm CO₂ harmonic probes

4

Year 1-2 Scientific Goals (cont'd)

2) Upgrade optical diagnostics of wakes in low-n_e plasma (cont'd)

5) Observe probe *Faraday rotation* due to kilo-T fields from high peak currents \Rightarrow visualize *magnetized plasma structures at n*_e < 10¹⁷ cm⁻³.

> Chang *et al.,* "Faraday rotation study of plasma bubbles in GeV wakefield accelerators," *Phys. Plasmas* **28**, 123105 (2021)

These upgraded diagnostics will improve our ability to observe large plasma bubbles in $n_{\rm e} \sim 10^{16} \, {\rm cm}^{-3}$ plasma.

Development of effective diagnostics of low-n_e wakes is a forefront challenge for WFA science: Downer *et al.*, "Diagnostics for plasma-based electron accelerators," *Rev. Mod. Phys.* **90**, 035002 (2018)

Faraday rotation can image plasma bubbles in low-n_e plasma

 $n_{e} \approx 10^{17} \text{ cm}^{-3}$: ⁽¹⁾ Chang et al., "Faraday rotation study of plasma bubbles in GeV wakefield accelerators," Phys. Plasmas 28, 123105 (2021) Texas $n_{\rm e} > 10^{19} {\rm \ cm^{-3}}$: ⁽²⁾ Kaluza *et al.*, *Phys. Rev. Lett.* **105**, 115002 (2010); ⁽³⁾ Buck *et al.*, *Nat. Phys.* **7**, 453 (2011). Petawatt

Faraday "streaks" of magnetized plasma bubble walls in $n_{e} \approx 10^{17} \,\mathrm{cm}^{-3}$ plasma

Year 1-2 Scientific Goals (cont'd)

3) Understand $\Delta E_e/E_e$, emittance growth in large bubbles thru simulations.

(PhD student Yuxuan Cao)

- PIC simulations take a long time --- too many parameters to vary to search for optimum.
- YC will focus on quasistatic bubbles.
- YC will develop machinelearning approaches to optimize the external injection process, and determine what ΔE/E and emittance are achievable in principle.

Ucla OSIRIS* quasi-3D simulations show that large bubbles preserve energy spread & spin polarization of strategically injected e-bunches during acceleration

[★] Fonseca et al., PPCF 55, 124011 (2013)

Year 3 Scientific Goal:

New capabilities: • CO₂ laser: >10 J, 2 ps, > 5 TW

• linac e-beam probe synchronized, compressed to fs level?

• optical diagnostic system expanded and tested

1st generation CO₂ LWFA experiment with external injection

Dream parameters:

1) 10 fs laser-e-beam rms jitter

2) e-bunch compression to 10 fs

3) 25 TW CO₂ pulse

Actual parameters will depend on status of laser and linac development.

SUMMARY

Year 1-2 goals:

1) Explore low- n_e , high- P_L limits of self-injected CO₂-LWFA

• use current (or slightly upgraded) CO₂ laser parameters

2) Strengthen optical wake diagnostics for $n_e \sim 10^{16}$ cm⁻³ plasma

• add transverse CTS, Faraday probes; MIR harmonics of CO₂ drive pulse.

3) Simulate energy-spread, emittance growth in low- n_e wakes

- relate ΔE , ε_n growth to laser and plasma input parameters
- use maching-learning algorithms to hasten search for optimum

Year 3 goal:

1) 1st generation externally-injected CO₂-LWFA experiment.

- take advantage of CO₂ power upgrades & e-beam synchronization/compression advances
- leverages Navid's work in developing e-beam probes
- a preparatory "Mercury" mission to build experience for a future "Apollo" moon-landing mission

CO₂ Laser Requirements

Configuration	Parameter	Unit s	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	n/a
	Peak Power	GW	~3		n/a
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	~9.2
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	initially ~5, higher by year 3.
	Pulse Mode		Single		single
	Pulse Length	ps	2		2 ps or shorter
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available within the next year	initially 5-10, higher by year 3
	M ²		~2		~2
	Repetition Rate	Hz	0.05		best available
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Linear

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	50-65 (year 3 only)
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	adjust for shortest length & lowest emittance (yr 3 only)
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	~100 fs or shorter, depending on developments by yr 3.
Transverse size at IP (σ)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	~ 30 µm; exact value will depend on results of yr 1-2 research
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	as low as achievable
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	match CO2 laser rep. rate
Trains mode Single bunch		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	single bunch

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	800 nm
FWHM Bandwidth	nm	20	13		13 nm
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	75 fs
Chirped FWHM Pulse Width	ps	≥50	≥50		50 ps
Chirped Energy	mJ	10	200		10 mJ
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	7 mJ
Energy to Experiments	mJ	>4.9	>80		5 mJ
Power to Experiments	GW	>98	>1067		
Nd:YAG Laser System	Units	Typical Value	es	Comments	Requested Values
Wavelength	nm	1064	Single p	ulse	
Energy n		5			
Pulse Width	ps	14			
Wavelength nm 532 F		Frequer	ncy doubled	532 nm	
Energy	mJ	0.5			
Pulse Width	ps	10			2-3 ps

Experimental Time Request

CY2024 Time Request

Capability	Setup Hours	Running Hours
Electron Beam	0	0
NIR Laser	60	140
LWIR Laser	60	140

Total Time Request for the 3-year Experiment (including CY2024-26)

Capability	Setup Hours	Running Hours
Electron Beam	60 (yr 3 only)	140 (yr 3 only)
NIR Laser	180	420
LWIR Laser	180	420

Special Equipment Requirements and Hazards

• Electron Beam

 Please indicate any special equipment that you expect to need, including (but not limited to) the transverse deflecting cavity, shaped bunch using mask technique, plasma capillary discharge system, bolometer/interferometer setup etc.: best possible compression and synchronization with CO2 laser (yr 3)

• CO₂ Laser

• Please note any specialty laser configurations required here: polarization control, harmonics of split-off portions of beam generated in e.g. AgGaSe₂

• Ti:Sapphire and Nd:YAG Lasers

 Please note any specialty non-CO₂ laser configurations required here: compressed Ti:S pulse at LWFA chamber

• Hazards & Special Installation Requirements

- Large installation (chamber, insertion device, etc.): no
- Cryogens: no
- Introducing new magnetic elements: Spectrometer magnet, < 1 T
- Introducing new materials into the beam path: no
- Any other foreseeable beam line modifications: compressor for e-beam (yr 3)