

Enabling R&D for Advanced M/L-WIR Laser Concepts New proposal

Misha Polyanskiy and Dismas Choge

26th ATF Users' Meeting 2024-03-27

Title	Enabling R&D for Advanced M/L-WIR Laser Concepts
Status	New proposal
PI	Mikhail Polyanskiy
Team	M. Babzien, D. Choge, W. Li, I. Pogorelsky
Funding	DOE ARDAP grant Phase II (2022—2025; PI: M. Polyanskiy) ATF laser R&D funding
Funding Status	Received

- 1) Systematically study laser-damage characteristics of infrared materials and laser optics under the action of intense LWIR laser irradiation
- 2) Deploy a full-scale working prototype of a postcompressor for a 2 ps to 500 fs compression
- 3) Initiate a pump/probe study of free carrier dynamics in semiconductor materials relevant for M/L-WIR lasers
- 4) Provide a framework for "small" research tasks needed for the development of M/L-WIR lasers

Laser-induced damage characterization

Single-shot laser Damage Experiment

Critical measurements

- Laser beam spot size w_0 (1/ e^2) criterion
- Pulse energy, E_0 -shot-shot variations originating from regen amplifier
- Damaged Area, S (measured offline with e.g optical microscope)

$$F_0 = \frac{2E_0}{\pi w_0^2}$$
 Peak Fluence (J/cm²)

$$A = \frac{\pi w_0^2}{2} \ln \left(\frac{E_0}{E_{th}} \right) \qquad \text{Damaged Area } (\mu m^2)$$

• Plot $A vs \ln(E_0)$ to obtain effective spot radius and threshold fluence

$$F_{th} = \frac{2E_{th}}{\pi w_0^2}$$

Sergey A. Lizunov et al., Applied Physics A (2022) 128:602

Single-shot approach

Al mirror

Digital image of Al mirror

Optical Microscope image of damaged spot for high energy shot

• The sample translated to a new position after every shot

Optical microscope image of damaged spot for low energy shot (but above damage threshold)

Liu's method

- E_{th} -Extrapolation to zero (A=0 μ m²; No damage)
- ω₀-Obtained from slope

Damage morphologies

NaCl window

Reported F_{th}: 0.5 J/cm² (*P. B. Corkum, IEEE J. Quantum Electron, 1985*)

Next-generation CO₂ laser: Post-compression

Post-compressor effort roadmap (v. 2023)

1st Prototype

• Pogorelsky et al. – Front. Phys. (accepted)

sub-picosecond pulse ever obtained

Semiconductor switch

A fast scalable switching technique for high-power CO₂ laser radiation

A. J. Alcock, P. B. Corkum, and D. J. James*

Division of Physics, National Research Council of Canada, Ottawa, Canada (Received 6 October 1975)

Fast switching of high-power 10- μ m radiation by reflection from optically induced carriers in polycrystalline germanium has been demonstrated. Initial studies carried out with a single-mode TEA CO₂ laser and a 2-nsec ruby laser pulse have resulted in the generation of synchronized ~2-nsec pulses of 0.69and 10- μ m wavelength. Potential applications of this technique include the selection of single high-energy pulses from the mode-locked output of large-aperture CO₂ lasers.

FIG. 1. Experimental configuration used to investigate semiconductor switching of $10-\mu m$ radiation.

Pump-probe experiments

(Materials for laser-controlled LWIR optical switching elements)

- 1) Systematically study laser-damage characteristics of infrared materials and laser optics under the action of intense LWIR laser irradiation
- 2) Deploy a full-scale working prototype of a postcompressor for 2 ps -> 500 fs compression
- 3) Initiate a pump/probe study of free carrier dynamics in semiconductor materials relevant for M/L-WIR lasers
- 4) Provide a framework for "small" research tasks enabling the development of M/L-WIR lasers

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	-
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	-
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	-
Transverse size at IP (s)	mm	30 – 100 It is possible to achieve transverse sizes below 10 um with special (dependent on IP permanent magnet optics. position)		-
Normalized Emittance	mm	1 (at 0.3 nC)	Variable with bunch charge	-
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	-

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media	9.2
	Peak Power	GW	~3		~3
	Pulse Mode		Single		Single
	Pulse Length	ps	2		2
	Pulse Energy	mJ	6		6
	M ²		~1.5		~1.5
	Repetition Rate	Hz	1.5	3 Hz also available if needed	1.5
	Polarization		Linear	Circular polarization available at slightly reduced power	Linear
CO ₂ CPA Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope gain media	9.2
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	2
	Pulse Mode		Single		Single
	Pulse Length	ps	2		2
	Pulse Energy	J	~5	<i>Maximum pulse energies of >10 J will become available within the next year</i>	~5
	M ²		~2		~2
	Repetition Rate	Hz	0.05		0.05
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Linear

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	TBD
FWHM Bandwidth	nm	20	13		TBD
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	TBD
Chirped FWHM Pulse Width	ps	≥50	≥50		TBD
Chirped Energy	mJ	10	200		TBD
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	TBD
Energy to Experiments	mJ	>4.9	>80		TBD
Power to Experiments	GW	>98	>1067		TBD

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	TBD
Energy	mJ	5		TBD
Pulse Width	ps	14		TBD
Wavelength	nm	532	Frequency doubled	TBD
Energy	mJ	0.5		TBD
Pulse Width	ps	10		TBD

Special Equipment Requirements and Hazards

Electron Beam

• Please indicate any special equipment that you expect to need, including (but not limited to) the transverse deflecting cavity, shaped bunch using mask technique, plasma capillary discharge system, bolometer/interferometer setup etc.:

CO₂ Laser

- Please note any specialty laser configurations required here:
- Ti:Sapphire and Nd:YAG Lasers
 - Please note any specialty non-CO₂ laser configurations required here: CW CO2 & ns Nd:YAG @ 355, 512 & 1024 nm

Hazards & Special Installation Requirements

- Large installation (chamber, insertion device, etc.):
- Cryogens:
- Introducing new magnetic elements:
- Introducing new materials into the beam path:
- Any other foreseeable beam line modifications:

CY2024 Time Request

Capability	Setup Hours	Running Hours
Electron Beam		
NIR Laser		
LWIR Laser	40	2 x 40 = 80

Total Time Request for the 3-year Experiment (including CY2024-26)

Capability	Setup Hours	Running Hours
Electron Beam		
NIR Laser		
LWIR Laser	40 x 3 = 120	80 x 3 = 240