

Increasing the capture rate of the Rubicon Inverse Free Electron Laser & advanced IFEL Nicholas Sudar

Advanced Accelerator Concepts 2016

Overview

Introduction to Rubicon

- The Rubicon Inverse Free Electron Laser

Motivation

- Results with the single buncher
- Improvements with double buncher scheme

The experiment

- The potential set-up

Future plans

- Aemelia: staged IFEL driven ICS experiment for MeV photons

Conclusion

The Rubicon Inverse Free Electron Laser The IFEL

What is an IFEL?

- Resonant energy exchange between a laser and electron beam inside of an undulator: $\frac{\partial y^2}{\partial z} = -2kK_lK\sin(\Psi) = \frac{\partial}{\partial z} \left(\frac{k(1+K^2)}{2k_w}\right) \qquad K_l = \frac{e\lambda E(z)}{2\pi mc^2} \quad K = \frac{e\lambda_w(z)B(z)}{2\pi mc}$ gradient phase synchronicity

- Rubicon IFEL: Helical halbach undulator - CO2 laser seed - BNL ATF

- choose design "resonant" phase and energy to satisfy above equation

Why pre-bunch?

- particles injected near resonant phase and resonant energy will be trapped.
- larger resonant phase (magnitude)
 - → larger gradient
 - → smaller bucket

The pre-buncher Single Buncher

- Single period, planar, halbach undulator
- Permanent magnet, variable gap chicane
- Laser imparts sinusoidal energy modulation
- Chicane dispersion converts to density modulation
- Chicane delay allows for control of injection phase

Rubicon results Single Buncher

Rubicon IFEL experiment

 $52 \text{ MeV} \rightarrow 95 \text{ MeV}$

Increased fraction accelerated: $30\% \rightarrow 60\%$

Demonstrated emittance conservation

Nocibur high efficiency energy extraction

 $65 \text{ MeV} \rightarrow 35 \text{ MeV}$

45% decelerated - 30% efficiency

RubiconICS

12 KeV X-Rays from 80 MeV

The double buncher Simple model

 $\frac{\Delta E}{\sigma E}$

-10

40

20

-40

 $\frac{\Delta E}{\sigma E}$

-3

Cascaded modulator-chicane modules for optical manipulation of relativistic electron beams

Erik Hemsing and Dao Xiang SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA (Received 24 October 2012; published 28 January 2013)

3

2

1/2 period planar undulator (small modulation)

The double buncher Simulations

E-Beam energy	$52 \rightarrow 80 \text{ MeV}$
emittance	2 mm-mrad
σxy (waist)	100 µm
Laser Wavelength	10.3 µm
Rayleigh Range	0.55 m
Laser Waist	1.4 mm
Laser Power	166 GW
λw (1 st modulator)	0.07 m (half period
Chicane 1: R56	215 µm
λw (2 nd modulator)	0.05 m (1 period)
Chicane 2: R56	80 µm
period tapering	0.04 -0.06 m
K tapering	2.03-2.56

The double buncher

Experiment preparation

Experiment preparation

New buncher position

What's next for IFEL research at ATF?

ATF - UCLA

xperiment for

Mev

CS photons from a

aser driven

FEL

Accelerator

After crossing the Rubicon, Julius Caesar lead his legion down the Via Aemilia. We intend to do the same!

Aemilia

- Add 2nd IFEL stage after Rubicon
- Retune Rubicon for final energy of 150 MeV
- 2nd stage boosts energy to 240-250 MeV
- Use double buncher for
- high capture

UCLA

Aemilia

- tapering designed for 1.75 TW - GPT simulations: 2 TW
- stages separated by 0.2 m
- laser waist: 0.1 m after
- 1st stage (1 mm waist)
- rayleigh range: 0.3 m
- GPT simulations: 70%
- accelerated
- ICS with 1um YAG laser → $h^*v_{ICS} > 1 \text{ MeV}$

13

Aemilia: a difficult experiment

Realizing Aemelia:

- Could be realized on beamline 2:Would maybe need to remove triplet.
- Laser clipping on dog-leg pipe
- 2 TW CO2 power?
- Control of injection phase between 1st and 2nd stages
- YAG ICS:
 - focusing of 240 MeV beam
 - timing
 - interaction location?

Conclusion

- Using cascaded pre-bunching: potential 97% capture rate
 - -Time-Dependent Genesis simulations
 - GPT simulations
- Experiment is realizable at ATF and the second buncher is in production
 - E-beam parameters, laser parameters, beamline layout
- Aemelia: where do we go from Rubicon?
 - 240 MeV output energy ~200 MeV/m gradient
 - potential generation of MeV ICS photons

UCLA: P. Musumeci, J. Duris, I. Gadjev, Y. Sakai

ATF: I. Pogorelsky, M. Polyanskiy, M. Fedurin, C. Swinson, M. Babzien, K. Kusche, M. Montemagno, P. Jacob, G. Stenby, B. Malone, M. Palmer

Radiabeam: A. Murokh

Work supported by: U.S. DHS DNDO under Contract No. 2014-DN-077-ARI084-01, NSF grant 145583 and DOE grant No. DE-SC0009914

Thanks