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Argonne Wakefield Accelerator Beamlines

15 MeV, 20 – 100 nC Drive beam

4 MeV, 0.1 nC Witness Beam
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Two Electron Beams

Drive Beam
• L-band RF Gun
• Magnesium photocathode
• Two L-band standing-wave 

linac tanks
• 15 MeV, 1 – 100 nC

Witness Beam
• 4 ½ cell, L-band RF Gun
• Copper photocathode
• 3.5 MeV, 0.1 – 1 nC
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AWA Sub-systems

Laser System
• Spectra Physics Tsunami oscillator, 

Spitfire regenerative amplifier, and two 
Ti:Sapphire amplifiers (TSA 50):
! 1.5 mJ at 248 nm
! 6 – 8 ps FWHM 
! timing stability: < 1ps rms
! amplitude stability: ± 3% rms at high 

energy, and ±1% at lower energy.
• If use Excimer amplifier:

! 15 mJ at 248 nm 

RF System
• Single klystron: 1.3 GHz, 24 MW, 8µs
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New AWA Drive Gun
• 1 ½ cell, L-band (1.3 GHz)
• 12 MW yielding 80 MV/m on cathode 
• Base pressure: 4x10-10 Torr 
• Beam characterization in progress:

! 14 MW RF power injected in the gun.
! measured beam parameters in 

agreement with design expectations: 
1 – 100 nC, 8 MeV

! Mg photocathode (laser cleaning) Measured 35 nC Pulse with green filter
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Wakefields in Dielectric Structures
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Direct wakefield acceleration:
• Dielectric parameters: 2a = 6 mm, 2b = 10 mm, ε = 4.6
• Electron bunch: σz = 1 mm, Q = 100 nC, RF power: 400 MW, 

yielding 92 MV/m at 19 GHz
• Field superposition from bunch train: four bunches of 100 nC or 

eight bunches of 50 nC generate over 300 MV/m
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Wakefields in Dielectric Structures (TBA)

Two-Beam Wakefield Acceleration
• Drive beam: 64 bunches of 50 nC, each separated by one RF period, 

generating a 50 ns long RF pulse.
• Stage I (28 cm long):  2a=11 mm, 2b=22 mm, ε = 4.6, 45 MV/m 

deceleration field, generating 500 MW (flat top).
• Stage II (85 cm long): 2a= 6mm, 2b= 11 mm, ε = 20, 112 MV/m

acceleration field, yielding a total acceleration of 95 MeV.
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High Brightness Beam Studies I:

Use Drive Gun to generate “low” charge, high brightness 
electron beam.
• Generate ~ 1nC with a normalized emittance on the order of 1 – 5 

mm-mrad
• Use a modified three screen technique to measure emittance (space 

charge effects included)
• Initial measurements agree qualitatively with predictions.

YAG 1 YAG 2 YAG 3GUN
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High Brightness Beam Studies II:

Schottky-enabled photoemission
• A new scheme to generate low emittance electron beams
• Relies on Schottky effect to enable photoemission with low energy 

photons

xscRFscRFthermal Jεεεεεε 22222 +++=

kinthermal E∝ε

φβαν coscwkin EhE +Φ−=

Schottky 
Term

hv=3.3 eV  and  ΦW=3.6 eV
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Schottky-Enabled Photoemission Observed

RF phase (deg.)
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Beam Diagnostics Development
(R. Fiorito, A. Shkvarunets) 

Problems with Use of Conventional OTRI Divergence Diagnostics
1. Low energy electrons  are  heavily scattered by first solid foil 
of a two foil OTR interferometer.
2. At very low energy (E < 10 MeV) the formation length
( gap between foils ) is very small (< ~ mm).

Motivation: Low Energy Divergence Diagnostic

Solution: ODR (Mesh) – OTR (Dielectric Foil) Interferometer
1. Fraction of beam passing through mesh holes is unscattered
allowing the fringes produced by the unscattered fraction to be 
measured over an incoherent background from the scattered fraction.
2. Transparent dielectric foil allows observation of  forward 
ODR-OTR despite the small gap spacing.
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EFFECT of  UNSCATTERED BEAM DIVERGENCE on 
ODR-OTR INTERFERENCES

E = 8  M e V , D = 2  m m , ∆ λ /λ  =  6 % , σ s c a t= 3 0  m ra d .
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Astrophysics applications

1. Radio Cherenkov radiation generated by charged particles 
traversing a solid target (sand, Moon)

2. Incoherent molecular microwave bremsstrahlung from 
ionized air

3. Fluorescence light generated by charged particles traversing 
the atmosphere (AIRFLY Collaboration)
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