Submicron emittance and ultra small beam size measurements at ATF.

Vitaly Yakimenko

January 31, 2002

Accelerator Test Facility Brookhaven National Laboratory

Outline/Conclusion

- D.8 mm normalized RMS emittance was measured for 0.5 nC / 60 MeV electron beam
 - (full not slice) $\boldsymbol{s}_{RMS} = \sqrt{\boldsymbol{e}_{RMS}} \boldsymbol{b}$
- Beam waist of the order of 10 mm was achieved and measured for 0.5 nC / 60 MeV beam

Fitting the beam size using multiple BPMs to resolve emittance

BPMs were used to measure beam sizes >200 μ m and quads for smaller sizes

Focusing properties of the transport line were extensively studied for the tomographic phase space rotation.

Accelerator Test Facility Layout

BPM resolution limit

Beam images taken consequently with the six different diagnostics under stable experimental conditions (the charge Q ~ 500 pC).

Electron beam horizontal spot size as a function of charge, measured with the scintillating diagnostics and the OTR.

Step #1 to improve emittance

 Stability of the driving laser and RF

Step #2 to improve emittance

- Beam based alignment of the focusing quads to transport beam thought the linac center.
 - CCD Images of the 0.5 nC /60 MeV beam after linac

No tricks with black level...

Step #3 to improve emittance

 ✓ Accelerating gradient in the RF GUN was increased to approximately 110 MV/m

Step #4 to improve emittance

- ✓ Laser spot on the cathode was optimized to generate round electron beam.
- ✓ Damaged optical lens in the driving laser transport was identified and replaced. _∃
- ✓ Beam was tuned to maximize gain in VISA

Step #5 to improve emittance Longitudinal Emittance Compensation

Small focus generation and measurements

Image of the 30 µm wire taken with same optical magnification as 0.5 nC e-beam on the right

 In vacuum, permanent magnet quadrupoles were installed approximately 20 cm from focal location to produce 10 μm spot size. (β~1 cm and ε~1 μm).

Acknowledgments

Many ATF staff members:

Marcus Babzien Ilan Ben-Zvi

Robert Malone Xijie Wang

and ATF users, particularly

Alex Mirokh

Denis Palmer

were involved in the continuous effort to improve electron beam brightness

Work was supported by the U.S. Department of Energy, Grant Nos. DE-AC02-98CH10886

• Thank you!