Optical Diffraction-Transition Radiation Interferometry and its Application to Beam Diagnostics

R.B. Fiorito, A.G. Shkvarunets and P.G. O'Shea University of Maryland

T. Watanabe, V. Yakimenko and R. Malone BNL/ATF

rfiorito@umd.edu, website: www.ireap.umd.edu

1

Incoherent ($\lambda \ll \sigma_I$ **) OTR Diagnostics**

- Near field imaging: beam's spatial distribution
- Far field imaging (angular distribution): rms* divergences (x', y') rms* trajectory angle energy spread

*rms measurements: requires focusing to a beam waist

OTR Interferometry Diagnostics

$$\frac{\mathrm{d}^{2}\mathrm{I}_{\mathrm{TOT}}}{\mathrm{d}\omega\mathrm{d}\Omega} = \frac{4\alpha}{\pi^{2}\omega} \frac{\theta^{2}}{(\gamma^{-2} + \theta^{2})} \left| 1 - \mathrm{e}^{\mathrm{i}\phi} \right|, \ \phi = \mathrm{L}/\mathrm{L}_{\mathrm{V}}, \ \mathrm{L}_{\mathrm{V}} = (\lambda/\pi)(\gamma^{-2} + \theta^{2})^{-1}$$

- Angular distribution of OTRI highly sensitive to $\lambda, \gamma, \theta, \Delta\theta, \Delta E$
- For typical high energy beams effect of ΔE negligible when $\Delta \gamma / \gamma \Box \gamma \Delta \theta_{e}$

Example of beam divergence diagnostic using polarized OTRI: Boeing FEL Accelerator*

Fit to data typically gives: $E \sim 1\%$ and $s_{rms} \sim 10\%$ precision.

*R. Fiorito and D. Rule, "Optical Transition Radiation Beam Emittance, Diagnostics" ₄ in AIP Conf. Proc. 319, R. Shafer ed. 1994

Limitations of conventional OTRI divergence diagnostics

- **1. Scattering in the first foil**
- low energy beams
- very low emittance beams
- **2.** Coherence length $L_v \sim \gamma^2 \lambda$
- low energy beams (L too small)
- very high energy beams (L too big)

Optical Diffraction-Transition Radiation Interferometry*

- Perforated first foil overcomes scattering limit of conventional OTRI
- Extends OTRI diagnostics to low energy and/or low emittance beams

*A. Shkvarunets. R. Fiorito and P. O'Shea, Nuc. Instrum. and Meth. B, 201, 153-169 (2003)

OPTICAL DIFFRACTION RADIATION

(produced by interaction of the field of the electron with a boundary)

DR Impact Parameter: $\alpha^{-1} = 2\pi/\gamma\lambda$,

 α^{-1} is the range of the radial field of the charge: $E_e \sim K_1(\alpha r)$ when $\alpha^{-1} < \gamma \lambda$, substantial DR produced

Note: angular distribution of DR depends on beam divergence, energy spread beam size and position; same coherence length applies : $L_v \sim \gamma^2 \lambda^{-7}$

ODR and OTR generated in a Metallic Micromesh

Grid of rectangular holes in a 5 micron thick Copper mesh showing the passage of a single electron through one hole and the surrounding electron field:

ODR and OTR intensities per electron for the unscattered portion of the beam (Simulation Code)

Observation Angle, Units of $1/\gamma$

ODR-OTR INTERFERENCES

E = 95 MeV , J_s/J_u = 1.28; d = 36.6mm; λ = 650nm; $\Delta\lambda$ = 70nm; σ_f = 2.3mr

Observation Angle, Units of $1/\gamma$

Comparison of OTR and ODTR Interferograms for 95 MeV Beam at NPS

(Vertical (y) beam waist, $I_{avg} = 1uA$, $\lambda = 650 \times 70 \text{ nm}$)

OTRI

 $\theta_{\rm y}$

vertical (θ_{u}) scans

Goals of ATF Experiments

 Develop ODTRI divergence diagnostic for moderate energy, low emittance beams Note: ATF normalized divergence ~ 0.01 mrad NPS normalized divergence ~ 0.10 mrad

- Show that ODTRI can extend the range of OTRI divergence diagnostics
- Measure the x, y rms divergences of the ATF beam and compare with other techniques to quantify the accuracy and sensitivity of ODTRI diagnostics

Challenges of ATF Experiments

- low emittance: small change on fringe visibility
- Low average current: $I_{ATF} \sim 0.8 \text{ nA} :: I_{NPS} \sim 0.8 \mu \text{A}$
- Signal to Backround: limited by x-rays S/B ~ 2
- Space limitations
- Interferences from other experiments on beam line

ODTRI Experimental Setup on ATF Beamline 2 (Top-View)

ODR-OTR - OTR-OTRI Interferometer

(Side – Observer's View)

Results of Experiments to Date

Beam Size and Position Monitoring at ATF with Cherenkov Radiation

from Glass Graticule

Low Charge

High Charge

Observation of Farfield ODTRI at ATF using Gated ICCD Camera

(E= 50 Mev, 135mm f.l. lens, 250 gates, 10ns width, λ = 644 x 80nm)

ODTRI_250gates_10nsgate, $\lambda = 600 \times 9nm$

Optical Radiation From Upstream Dielectric Tube (DWE)

Cu_mesh_120gates_255gain

mirror_120gates_255gain

Addressing Signal/Background problem: Work in Progress

• Gating: limited to decreasing d.c. optical radiation only because beam related optical radiation and x-rays coincident with pulse)

• Move and shield ICCD Camera to floor level (3 feet below beamline): problems of physical space around beamline, alignment of optics and field of view limitations

