Presentation to 12th ATF User's Meeting and ATF Program Advisory Committee Brookhaven National Laboratory January 8-9, 2004

STATUS REPORT ON LACARA EXPERIMENT*

J. L. Hirshfield

Yale University and Omega-P, Inc.

<u>cohorts</u>: Mike LaPointe, Omega-P Tom Marshall, Columbia U. Sergey Shchelkunov, Columbia U. Changbiao Wang, Omega-P

*Research supported by US DoE, HEP

LASER <u>CYCLOTRON AUTO-R</u>ESONANACE <u>A</u>CCELERATOR*

LACARA

Autoresonance condition:

 $B_{autores} = B_o [\gamma (1 - \beta)],$ and $[\gamma (1 - \beta)] = \text{const.},$ for a plane wave in uniform- $B_o = m\omega/e.$

On a tight budget: $B \cong B_1 \pm 5\%$, where B_1 is optimized for energy gain.

LACARA Publications

C. Wang and J. L. Hirshfield, "Laser-driven cyclotron autoresonance accelerator," in *Proc. of the 1999 Particle Accelerator Conf.*, A. Luccio and W. MacKay, eds., p. 3630 (1999).

J. L. Hirshfield and Changbiao Wang, "Laser-driven electron cyclotron autoresonance accelerator with production of an optically chopped electron beam," *Phys. Rev.* E **61**, 7252 (2000).

J. L. Hirshfield and C. Wang, "Laser-driven cyclotron autoresonance accelerator," in *Advanced Accelerator Concepts*, edited by P. L. Colestock and S. Kelley, AIP Conf. Proc. **569**, 326 (AIP, New York, 2001).

C. Wang, J. L. Hirshfield, and T. C. Marshall, "Creation of femtosecond sheet-like bunches for driving optical-scale dielectric slab accelerator structures," in *Proc. of the 2001 Particle Accelerator Conf.*, June 18-22, Chicago, Illinois, P. Lucas and S. Webber, eds. (IEEE, NJ, 2001), p. 4035.

T. C. Marshall, C. Wang, and J. L. Hirshfield, "Femtosecond planar electron source for driving micron-scale dielectric wake filed accelerator," *Phys. Rev. Special Topics-Accelerators and Beams* **PRST-AB 4**, 121301 (2001).

Layout of LACARA at ATF

Layout of LACARA at ATF

Parameters for LACARA at ATF

laser wavelength λ laser power laser waist radius wo **Rayleigh** length initial beam energy initial energy spread initial rms emittance $\sigma_x = \sigma_v$ final beam energy final rms energy spread

10.6 μ m (CO₂) 800 GW 1.16 mm 39.88 cm 50 MeV 1.5×10^{-3} mm-mrad 28 µm 78.5 MeV 4.05 MeV (5.1%)

Predicted mean energy gain in LACARA

Cutaway drawing of LACARA dry cryomagnet

LACARA magnet design parameters*

design field	6.0 T	total turns	30,597 +
winding id	4.46"	30,713 =	61,310
winding od	6.40"	wire length	87,157 ft
winding length	38.5"		(16.5 miles)
split gap width	0.5"	inductance	~60 Hy
wire diameter	2.6 mm	charging rate	5-6 A/hr

*designer:

Peter Hwang, Advanced Cryogenics Engr. manufacturer:

CVIP (Cyrogenics, Vacuum, Instrumentation, Piping)

Photo of LACARA dry cryomagnet

Photo of LACARA dry cryomagnet

Magnetic field profile: measured, ----- calculated at 20 A. Design current = 76.5 A.

