<u>Ultrafast detection of relativistic Charged Particles by Optical Techniques</u> (CPOD)

Thomas Tsang, R. Burns, L. Kowalski, D. Lazarus, Y. Semertzidis, T.Srinivasan-Rao

Purpose:

Non-invasive characterization of the electron bunch length

Approach:

- Using the Coulomb field of the electron beam to modulate an electro-optical crystal
- Free space Mach-Zehnder interferometer to convert phase modulation to intensity

Benefit:

- Simple arrangement
- · Electron bunch can be measured with unprecedented temporal resolution ps-fs

Beam time: 2003 – 4 days – beamline #1 2002 – 9 days – beamline #3b

Funding: no current funding part-time scientists borrowed equipments

Free-space Mach-Zehnder arrangement

$$E_z = \frac{1}{4\pi\epsilon_o} \frac{\gamma N_e q T(t)}{\epsilon r^2} \sim 10^5 \text{--} 10^6 \text{ V/m}$$

$$I = I_o \cos^2 [\Gamma_o + \Gamma(t)]$$
$$\frac{I}{I_o} \approx I_{dc} + \frac{r_{eo}^3 N_e q T(t)}{4\pi\epsilon_o \epsilon r}$$

- E-beam co-propagate with cw probe laser beam
- Various EO crystals are loaded on one holder

4-15-03

Ultrashort electron beam bunch length – cross correlation technique

- $\Delta t_{\text{electron}} \rightarrow 100-10$ fs, noninvasive bunch length measurement is needed <u>electro-optical technique</u>
- spectral encoding technique has a fundamental time resolution limit, $t = \sqrt{t_o t_c}$
- bunch length is distorted: THz field \leftrightarrow optical carrier spectrum \rightarrow additional spectral modifications
- cross correlation technique can unambiguously recover the spectral encoded EO modulation

- single-shot, noninvasive, femtosecond resolution
- no timing ambiguity

Wilke, et. al. PRL 88, 124801 (2002). Sun, et. al., APL 71, 2233, (1998). Fletcher, Optics Express 10, 1425, (2002). Jamison, et. al., Optics Letters 28, 1710 (2003).

Conclusions

- a class II cw laser can be used to measure the electron bunch length
- limited # of EO modulated photons gives low SNR
- timing jitter on the trigger restricted the scan range of the streak camera
- to proceed to sub-picoseconds temporal characterization, optical pulses shorter than the electron bunch are needed – spectral encoding
- to fully characterize a femtosecond electron bunch w/o a timing ambiguity, it is necessary to cross-correlate the spectral encoded EO signal pulse with an unchirped pulse (almost like a FROG measurement) to recover the envelope information