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Outline

o Essence of the PASER
o Theoretical Model
o Experiment
o Essence of the Proposed Program
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Essence of the PASER
Macroscopic Structures

Microscopic Structures

o Cavity (Circular Acc.)
o Coupled cavities (Linear Acc.)
o Electron bunch (Wake-Field Acc.)
o Laser pulse (Laser-Plasma Schemes)

Atom/molecule (Ar+,CO2)
Dopant in solid-state (Nd:YAG)

NLC - SLAC
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Essence of the PASER (macro)
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Essence of the PASER (macro)
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Essence of the PASER (macro)
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Acc.

Acc.

Amp.

L. Schächter; Phys. Lett. A ., 205, p. 355-358(1995).

Essence of the PASER (micro)

Dec.
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Outline

o Essence of the PASER
o Theoretical Model
o Experiment
o Essence of the Proposed Program
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Theoretical Model 

o # Linear medium # Uniform  micro-bunches
o # Constant velocity  # No transverse motionNo transverse motion
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Frequency Selection
Theoretical Model
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Outline

o Essence of the PASER
o Theoretical Model
o Experiment
o Essence of the Proposed Program
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Experiment
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Experiment
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1.5% peak-to-peak energy modulation

Direction of increasing energy

~685keV

~845keV

Discharge off

Discharge on

2,000,000 collisions !!Experiment

Banna et al., PRL 97, 134801, 2006
Banna et al., PRE 74, 046501, 2006
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Outline

o Essence of the PASER
o Theoretical Model
o Experiment
o Essence of the Proposed Program
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Goals of the Proposed Program

o Goal #1: High Gradient Operation @ IR (i)

o Goal #2: Staging of PASER Cells
o Goal #3: Future Configurations

(i) Details in Wayne’s talk
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Goal #1: High Gradient

o Goal #1: High Gradient Operation @ IR
o Goal #2: Staging of PASER Cells
o Goal #3: Future Configurations

Optimizing the Energy Density
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• Collective effects of the entire ensemble of 
electrons cause oscillating dependence of the 
energy gain. 

• Energy density can be tuned to optimum enabling 
maximum energy gain. 

• The optimum value of the energy 
density is not affected by the beam size.

• The energy gain is significantly affected 
by the beam size.

• Apply  beam focusing in the cell

• Improve excitation efficiency (discharge)

• Increase the pressure ( to 1 atm)
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Goal #1: High Gradient
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• The number of microbunches affects the 
bandwidth of the energy exchange process. 

• The number of microbunches determines the 
electrons density within each micro-bunch. 

• The optimum energy density increases with 
the decrease of M

• Number of electrons in 
macro-bunch is constant

• Increasing the amount of charge

• Improve bunching efficiency (in wiggler)

Optimizing the Micro-bunches

o Goal #1: High Gradient Operation @ IR
o Goal #2: Staging of PASER Cells
o Goal #3: Future Configurations
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Goal #2: Staging
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o Goal #1: High Gradient Operation @ IR
o Goal #2: Staging of PASER Cells
o Goal #3: Future Configurations
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Goal #2: Staging

o Goal #1: High Gradient Operation @ IR
o Goal #2: Staging of PASER Cells
o Goal #3: Future Configurations
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Goal #3: Future Configurations

• Argon+ medium (476.5nm)

• Enhanced breakdown threshold

• 50 times more energetic photons than CO2

• Potential high energy density stored  

•Low operating pressure

• Use gas-filled capillary discharge

• Eliminate use of diamond windows

• Reduce gas scattering effects

o Goal #1: High Gradient Operation @ IR
o Goal #2: Staging of PASER Cells
o Goal #3: Future Configurations
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Goal #3: Future Configurations

• Solid-state Nd:YAG (1.06 μm) 

• 10 times more energetic photons

• Higher density of population inversion

• Electrons traveling through vacuum tunnel

• Eliminate gas and windows scattering (emittance)

•Challenges:

• Micro-bunches at the 1 micron wavelength 

• Efficient interaction requires GeV electrons 

o Goal #1: High Gradient Operation @ IR
o Goal #2: Staging of PASER Cells
o Goal #3: Future Configurations
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Summary of Proposed Program
o Goal #1: High Gradient Operation @ IR

- enhance the energy density stored

- improve bunch density

o Goal #2: Staging of PASER Cells
- no need for external phase control

o Goal #3: Future Configurations
- Ar+  - breakdown threshold
- Nd:YAG - high energy density
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Road Map 
Learning CurveProof of Principle

Ultimate Goal

40-50 [MV/m]

1-2 [GV/m]

0.5 [MV/m]
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Concluding Remark


