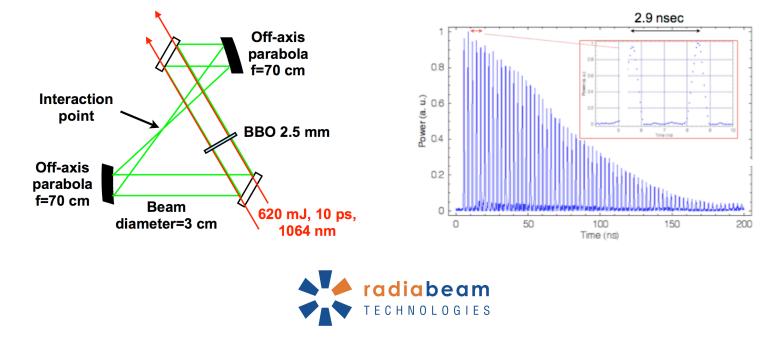
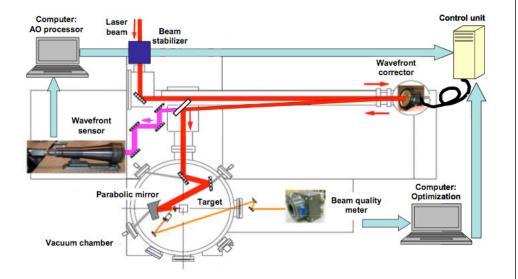
High-flux Inverse Compton Scattering for Medical, Industrial and Security Applications

Applications of ICS

- Medical Imaging
- Radiotherapy
- Non-Destructive Testing
- Research
- Security/Defense: long-range detection of special nuclear materials via photofission
 - > 6 MeV monochromatic X-ray source with low divergence
 - Recently completed a Phase I SBIR for DTRA
- All applications require more average flux than currently produced...
 - 10¹² photons/second required


Our approach

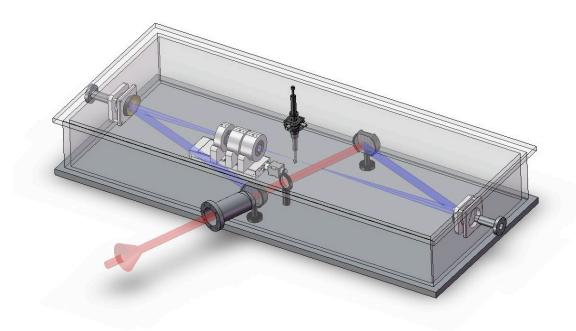
- Use proven technology (photoinjector, ultra-fast laser)
- Increase "effective" repetition rate using laser pulse recirculation, multiple electron bunches
 - Goal: X 100 increase in flux
- Use Adaptive Optics/Feedback system for laser and accelerator to increase stability
- Integrate laser recirculator/final focus and electron beam final focus system (PMQs) into a single vacuum box
- Eventually implement high-rep rate gun (1 kHz) and laser to gain another factor of 100 in flux
- 100 10,000 improvement in average flux


Laser recirculator

- Recirculation Injection by Nonlinear Gating (RING)
 - Developed at LLNL [I. Jovanovic et al]
 - IR pulse injected and frequency-doubled
 - Green pulse recirculated through final focus
- Advantage: simple, inexpensive, can handle high power
- Disadvantage: "Ring-down"

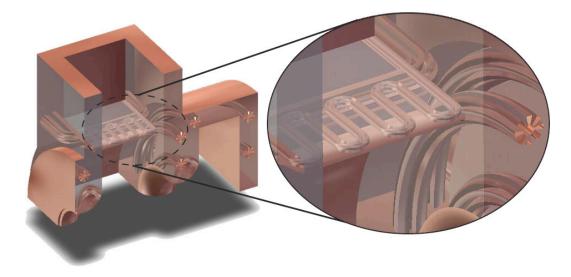
Adaptive Optics/Feedback

- Laser AO system before Interaction Region
 - Beam stabilizer: fast steering mirrors and position sensitive detectors
 - Wavefront corrector: deformable mirror and Shack-Hartmann sensor
- Accelerator diagnostics feedback to control system



Diagnostic method	Measurable	Feedback to
Current Transformer (ICT)	Charge	Drive laser
Faraday cup at the beam dump	Current	RF system
Button BPM at the IP	Beam position	Steering magnets
Beam profile monitor at the dispersion section	Time of arrival Energy	Drive laser RF phase shifter & attenuator
Beam profile monitor at the beam dump	Spot size	Matching quadrupoles Solenoid
Off-axis X-ray monitor	Indirect	All of the above
CER (Coherent Edge Radiation) intensity monitor	Indirect	RF system, timing system

Interaction Box


- Integrated RING and electron beam final focus
 - Adjustable Halbach-PMQ triplet
- IP diagnostic for alignment of beams

High-Rep Rate Photoinjector

- Ongoing development at RadiaBeam (not part of this proposal)
- High-gradient (> 100 MV/m), 1 kHz photoinjector
- Novel fabrication technique for copper RF structures allows better cooling

Proof-of-Concept Experiment

- Currently awaiting Phase II funding from DTRA
- RING, PMQ system, interaction box, AO system, diagnostics, will be fabricated, tested at RadiaBeam, and installed at ATF
- ATF Nd:YAG laser will be upgraded
 - Additional amplifier stage for interaction pulse
 - Reconfigured to produce bunch train for gun
- Experiment will be performed
 - First optimize electron and laser beam transport to IP
 - Then install components, perform single-bunch ICS
 - Finally, attempt multi-bunch ICS

Parameters

Electron Beam	ATF POC	ICS (Medical)	ICS (Security)			
Electron beam energy	70 MeV	40 MeV	550 MeV			
Charge per bunch	1 nC					
# of bunches per train	> 50 > 100					
Macrobunch repetition rate	5 Hz 20 Hz					
Bunch length (flat top)	10 ps					
RMS spot size, σ_x, σ_y	15 µm	10 µm	7.4 μm			
Laser Beam	w/RING	w/RING	w/RING			
Fundamental wavelength	1064 nm					
Wavelength at interaction point	532 nm					
RMS spot size at the waist	15 µm	10 µm	7.4 μm			
Max. Pulse energy at IP	300 mJ	600 mJ	600 mJ			
Pulse duration (FWHM)	10 ps					
Dimensionless field amplitude, a_L	0.02	0.04	0.06			
Spatial alignment tolerance	+/- 5 μm	+/- 3 μm	+/- 2 μm			
Compton photons						
Photon energy	177 keV	50 keV	10.8 MeV			
Number of photons per shot	1.0x10 ⁸	5.0x10 ⁸	1.0x10 ⁹			
Average photon flux	$> 1.0 x 10^{10} \gamma/s$	$> 1.0 \mathrm{x} 10^{12} \mathrm{\gamma/s}$	$> 1.0 \mathrm{x} 10^{12} \mathrm{\gamma/s}$			
Source divergence (RMS)	7 mrad	13 mrad	1 mrad			

ask	Duration	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Quarter 5	Quarter 6	Quarter 7	Quarter
 1) Project Management/Administration 	100w								
 1.1) Project Management 	100w								
 1.1.1) Project Organization 	4w (
 1.1.2) Design Reviews/Meetings 	40w								
 1.1.2.1) Preliminary Design Review 		<u>Á</u> p							
 1.1.2.2) Critical Design Review 			2						
 1.1.2.3) Project Review Meeting 					æ				
• 1.1.3) Reporting	100w				111				
 1.1.3.1) Monthly Reports 	96w								
 1.1.3.2) Final Report 	4w								Ģ
• 1.2) ES&H	8w								Ī
2) Interaction Region System	40w								
• 2.1) Interaction Laser RING	38w								
• 2.1.1) Interaction RING Design	16w	7							
• 2.1.2) Interaction RING Components	10w		1						
• 2.1.3) Interaction RING Set-up/Testing	10w								
• 2.2) Adaptive Optics System	40w	1							
2.2.1) AO System Design	16w		1						
2.2.2) AO Control System	12w			Ţ					
2.2.3) AO Fabrication/Testing	12w								
 2.3) Electron Beam Final Focus System 	38w	1							
 2.3.1) PMQ System Design 	16w								
 2.3.2) PMQ System Fabrication 	16w			1					
 2.3.3) PMQ System Testing 	6w								
 2.4) Interaction Box 	38w	i							
 2.4.1) Interaction Box Design 	16w	<u></u>							
 2.4.2) Interaction Box Fabrication 	16w								
 2.4.3) Interaction Box Testing 	6w			<u> </u>					
 2.5) Electron Beam Feedback System 	32w	FT T							
 2.5.1) Feedback System Design 	16w	<u> </u>							
 2.5.2) Feedback System Hardware 	16w								
 2.5.3) Feedback System Software 	16w		<u>+</u>						
 2.6) Interaction Region System Complete 					<u>*</u> _				
• 3) ATF Laser System Upgrade	26w								
• 3.1) Front-end Reconfiguration	20w								
• 3.1.1) First Pockels Cell Reconfiguration	1w								
• 3.1.2) Amplifier Gain Compensation	2w	<u> </u>							
• 3.1.3) Pulse-Picking Pockels Cell		T							
	6w 17w								
• 3.2) Interaction Pulse Transport/Amplifier									
• 3.2.1) Amplifier Design	6w								
3.2.2) Amplifier Components	6w			1					
 3.2.3) Amplifier Set-up and Testing 	3w			\bigcirc					
4) System Integration/Test	92w	1							
 4.1) Accelerator Performance Optimization 	52w								
 4.2) System Installation at ATF 	12w				1				
 4.2.1) MELISA Installation 	12w				<u> </u>				
 4.2.2) E-Beam Feedback System Installation 	12w				<u></u>				
 4.2.3) X-Ray Diagnostics Installation 	12w				<u> </u>				
 4.3) Experimental Demonstration of IGS 	40w								
 4.3.1) Single-bunch Experiment 	16w								
 4.3.2) Bunch-train Experiment 	24w						<u>+</u>		J