

ATF Program Advisory Committee & ATF Users' Meeting

April 2-3, 2009 · Brookhaven National Laboratory

ATF CO₂ LASER

new developments near-term plans technology potentials

Igor Pogorelsky

Modeling

Femtosecond Yb laser

Near-future plans (as seen in 2007)

- Establish 3-ps TW regime of operation for user's experiments.
- Improve and expand on-line laser diagnostics. (Includes CO₂ autocorrelator modification for shortpulse measurement.)
- Develop techniques for isolating the laser system from parasitic feedback (back reflections) from a target plasma.
- Work on characterizing and controlling the contrast.
- Acquire capability for simulating ps pulse amplification.

Summarizing progress since User's Meeting 2007

- Better laser characterization and understanding through:
 - New simulation capability
 - New pulse diagnostic
- Improvements in a pulse structure (changed line, etc.)
- Multi-pulse trains for high-rep-rate gamma sources
- New results in user's experiments:
 - First LACARA acceleration
 - Demonstration of quasi-monoenergetics MeV protons
 - Successful Compton runs
 - Approach to high-repetition-rate gamma sources
- Decisive steps towards the 1-ps multi-Terawatt regime via a new solid state laser and isotopic upgrade

Near-future plans

Establish multi-terawatt regime by completing tasks:

- Put in operation a new femtosecond laser and 1-ps CO₂ pulse slicing system synchronized with linac.
- Operate regenerative amplifier with mult-isotope gas to avoid pulse splitting.
- Comprehensive on-line laser diagnostic.
- Contrast (10³ for ps pre-pulse, 10⁶ for ns pre-pulse).
- Simulation of multi-terawatt regimes and chirped pulse compression.
- Improved multi-pulse train regime with isotopes.

CO₂ laser system Upgrade to 2 TW, 3 ps pulses

Prospective setup with chirping and compression

CO₂ laser for plasma accelerators

Ponderomotive force drives plasma wave

$$m \frac{d\mathbf{U}}{dt} = -e \nabla \Phi_{\text{pond}},$$

The ponderomotive energy of the electron in the optical field is proportional to λ^2 .

CO₂ laser will produce 10 times bigger bubble, 10 times higher charge, and better control over e-beam parameters and phasing between accelerator stages.

