

ATF Program Advisory Committee & ATF Users' Meeting

April 2-3, 2009 · Brookhaven National Laboratory

ATF CO₂ LASER

back to basics present status research highlights

Igor Pogorelsky

ATF block diagram

ATF laser personnel

Accelerator Test Facility

- Igor Pogorelsky
 CO₂ laser and experiments support
- Mikhail Poliansky LDRD Postdoc, simulations, CO₂ diagnostics
- Marcus Babzien
 YAG laser, general optical diagnostics
- Daniil Stoliarov
 Post-doc, fs solid-state laser
- Karl Kusche laser safety, computer controls
- Vitaly Yakimenko global laser strategy
- + ATF computer engineer, electronic engineer, designers, technicians

Industrial CO₂ lasers

Up to 100 kW average power
Operate at low pressure <<1 atm
Bandwidth ~P (10 atm supports a picosecond pulse)

Ultrafast gas lasers require high pressure

Inverse Fourier Transform for discrete spectrum results in a train of discrete pulses

$$f(t) = \sum_{i=0}^{n} F_{j}(t) \exp[i2\pi(v_{0} + \Delta v \times j)t]$$

where $n \approx 1/\tau_0 \Delta v$, τ_0 is the initial pulse width.

Gain Spectrum

linewidth defined by pressure broadening. Amplified Picosecond Pulse

 $f(t) = \sum_{k=0}^{m} f_k \left(t_0 + \Delta t \times k \right)$

where $\tau_k \approx \tau_0$, $m \approx 1/\tau_0 \,\delta v$, δv - rotational

Strongly modulated rotational line structure of the CO_2 gain spectrum modifies the frequency content of picosecond pulses, changing their temporal structure.

At 10 atmospheres, collisional broadening produces overlap of the rotational lines into the 1 THz wide quasi-continuous gain spectrum, and pulses as short as 1 ps can be amplified without distortion.

Commercially Available High-Pressure CO₂ Laser with UV-ionized discharge

UV-preionized Pressure Beam Size 13 x 13 mm² Repetition Rate 20 -500 Hz Pulse Energy 1.5 J Average Power 750 W

10 atm

SCIENTIFIC DEVELOPMENT & INTEGRATION (PTY) LTD

Custom high-pressure x-ray ionized CO₂ amplifier operated at BNL/ATF

High-pressure CO₂ amplifiers operated at BNL/ATF

Methods of short pulse generation Semiconductor optical switch

•Reflection by electron-hole super-critical plasma controlled by a short wavelength laser.

Methods of short pulse generation Kerr effect

A higher-power laser induces polarization in optically active CS₂ liquid.
This rotates polarization of a portion of a CO₂ pulse overlapped with YAG.
Relaxation of CS₂ molecules in 1-2 ps.

Methods of short pulse generation **Parametric generator**

•Mixing two laser beams in a nonlinear crystal with production of differential frequency.

•Mixing ω_3 and ω_1 with production of a CO_2 pulse at the duration of YAG or shorter.

Insignificant stretch in thin crystals, 1 ps is possible.

CO₂ laser system delivers 0.5 TW, 6 ps pulses

ATF success story

Benefits from using CO₂ laser

- ATF pioneers a *picosecond* CO₂ gas laser for strong-field physics applications.
- This provides a new platform for exploring novel methods of particle acceleration and radiation sources.
- <u>CO₂ (λ =10 μ m) advantages</u> as compared to solid-state lasers (λ ~1 μ m) :
- 10 times more photons per Joule
- favorable scaling of accelerating structures, better electron phasing into the field
- stronger ponderomotive effects at the same laser intensity

Long-wavelength benefits: better electron phasing into the field

Staged Electron Laser Acceleration

First Monoenergetic Laser Acceleration

Long-wavelength benefits: stronger ponderomotive effects

Energy of the electron quiver motion in laser field E

Proton accelerator

•At the same power and energy, CO_2 laser will provide the same ponderomotive action within $\sim\lambda^2$ (100 times) bigger area or $\sim\lambda^3$ (1000 times) bigger volume.

•Accordingly, we expect that the number of accelerated ions would grow with λ .

Demonstration of record yield and 2nd harmonic in relativistic Thomson scattering

Spin-offs from earlier Thomson scattering experiments

Next laser talks

- Marcus Babzien "Experimental support and instrumentation"
- Mikhail Polyanskiy "Simulation and diagnostic tools for better understanding and upgrade of the CO₂ laser"
- Daniil Stolyarov "A femtosecond CO₂ front end based on frequency mixing with an Ytterbium laser"
- Igor Pogorelsky "CO₂ laser: Near-term plans"