Development of the Solid-State Laser System for the Accelerator Test Facility

> Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009

Brookhaven National Laboratory

Outline

- Motivation for the upgrade of the solid state laser system
- Type II SHG pulse compressor (currently employed)
- Optical switch / CO_2 laser slicing.
- 2-stage fiber amplifier
- Regenerative amplifier

Brookhaven National Laboratory

Slicing of the CO_2 laser pulse

ATF CO₂ laser diagram

- The slicing makes the duration of the CO_2 laser pulse approximately equal to the duration of the drive laser pulse
- If output energy of the pulse stays the same – the peak intensity grows

Optical switch

Pulse compression in a long Type II SHG crystal

$\rm CO_2$ pulse shortening

- Our measurements show that the CO_2 laser pulse consists of a train of individual pulses
- Duration of each individual pulse is ~ 6 ps
- These results are in agreement with the simulation for the given gas mixture

Motivation

Normalized vector potential: $a_0 = \frac{eE}{mc \,\omega}$ $(a_o \ge 1 - \text{relativistic regime})$

improvement of ATF CO_2 laser parameters:

Optical switch

Plans for improvement of the ATF solidstate laser system

Self-Phase Modulation (SPM) and Spectrum Broadening in a Yb-doped Fiber

J. Limpert et.al Vol. 10, No. 14 / OPTICS EXPRESS 628

pulse attains the parabolic shape resisting the wavebreaking.

Oscillator

2-stage fiber amplifier

Performance of the 2-stage fiber amplifier

The temporal profile of the compressed pulse

- pulse duration of the output after compression is close to the duration of the oscillator pulse
- pulse is distorted due to nonlinearity

3rd stage (Photonic crystal fiber)

Photonic crystal fiber would allow reaching 100 µJ of the output power.

BUT

Nonlinear distortion making the pulse incompressible.

Wakefield imaging (Frequency Domain Holography)

(N. H Maltis et. al. Proceedings AAC06)

• A short laser pulse is stretched in a fiber stretcher and attains a frequency chirp

• The chirped pulse is split into two pulses (reference and probe)

•Sequence: reference pulse – electron beam – probe pulse is sent through the plasma.

•Wakefield causes phase modulation in the probe pulse

•The probe and the reference pulses interfere in a spectrometer revealing the wakefield structure

Brookhaven National Laboratory

Regenerative amplifier (layout)

Regenerative amplifier simulations

Beam propagation:

Yb:glass slab region

Cavity stability

Stability vs. distance between folding mirrors

Laser Kinetics: pulse buildup 200 gk g0 0.5 – population 200 400 100 1c 50 gf := $g_0 \leftarrow g_0$ for $k \in 1$... Kpass $f_k \leftarrow T \cdot \ln \left[\exp(g_{k-1}) \cdot (\exp(f_{k-1}) - 1) + 1 \right]$ $g_k \leftarrow g_{k-1} - p \cdot \left(\frac{f_k}{T} - f_{k-1}\right)$ augment(g,f)

k := 0.. Kpass

Brookhaven National Laboratory

Design of the pump coupling units

Goal: to couple the 100 μ m fiber output to the Yb:glass slab through the cavity folding mirror

Magnification: -1.5

Performance of the regenerative amplifier

- The maximum output pulse energy of the regenerative amplifier is $E_{max} = 180 \ \mu J$ (50-60 μJ after compression)
- Duration of the compressed regenerative amplifier pulse is about 450 fs

Temporal profile measurements (FROG)

Summary

We developed so far:

- Pulse compressor based on SHG in Type II crystal: 1.5 mJ, ~6 ps, $\lambda = 532$ nm (currently employed for the slicing of the ATF CO₂ laser)
- 2-stage fiber amplifier: (5 µJ, ~200 fs, λ = 1047 nm) non-feasible for slicing
- Regenerative amplifier: 180 μ J, 400 fs, $\lambda = 1047$ nm

In progress...

- Packaging of the regenerative amplifier
- Development of the slicing setup based on the pair of non-linear crystals

Brookhaven National Laboratory

Acknowledgments

ATF team:

V. Yakimenko, I. Pogorelsky, M. Babzien, I. Pavlishin M. Polyansky K. Kusche M. Montemagno D. Davis T. Corwin

Brookhaven National Laboratory

