ATF Present Drive Laser & Replacement

Igor Pogorelsky

CO₂ laser and experimental support

Mikhail Polyanskiy

Marcus Babzien

simulations diagnostics data

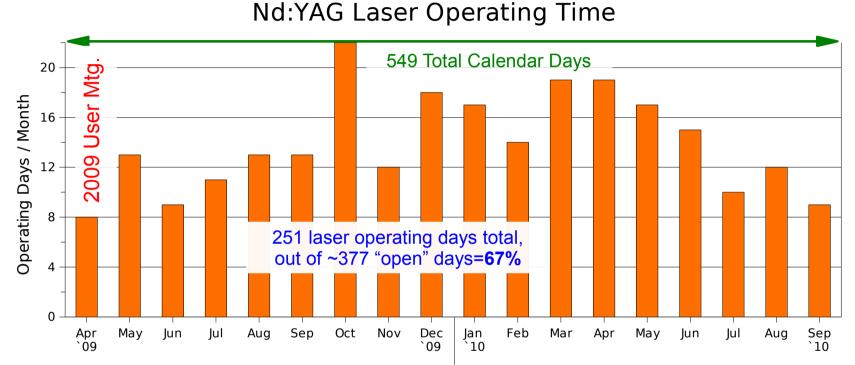
simulations, diagnostics, data acquisition

YAG laser, general optical diagnostics

Karl Kusche

Laser safety, computer controls

ATF Program Advisory & Users Meeting, October 6-7,2010


Current Nd:YAG Parameters

Energy: (dual pulse	<u>mode)</u>		<u>Transverse</u>
UV on cathode		0-40 μJ	Range of b
IR to CO ₂ laser		10 mJ	Top-Hat Be
Laser output: total IR		20 mJ	
IF	R to gun	7 mJ	Repetition r
G	Green	2 mJ	
U	IV	250 μJ	Shot-to-sho
			Timing
<u>Energy: (pulse train mode) IR</u>		~100 mJ / 20 pulses	Energy
			Pointing
Pulse duration (FW	<u>HM):</u>		
Oscillator IR		7 ps	<u>Drift (8 hou</u>
Amplified IR		14 ps	Timing
Green		10 ps	Energy
UV		8 ps	Pointing

Transverse Distribution:	
Range of beam size on cathode (\emptyset)	0.2 - 3 mm
Top-Hat Beam Profile Modulation (P-P)	<20%
Repetition rate	1.5, 3 Hz
Shot-to-shot stability (rms):	
Timing	<0.2 ps
Energy	1 %
Pointing (fraction of beam Ø)	<0.3%
<u>Drift (8 hour P-P)</u>	
Timing	<2ps
Energy	<15%
Pointing (fraction of beam \emptyset)	<1%

Nd:YAG Running Time / Reliability

- No major failures or operating constraints
- Implemented new mode of green pulse delivery to FEL room: parasitically extract gun pulses when CO₂ laser fires →

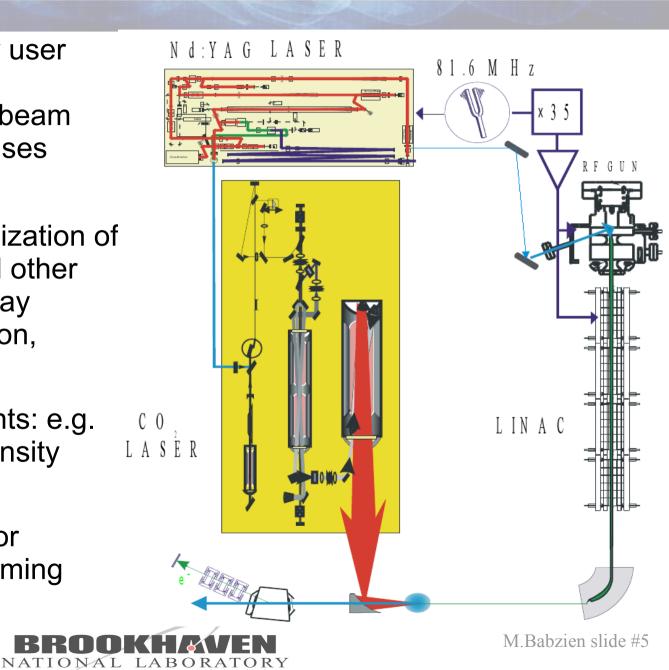
e⁻ beam & green diagnostic operation no longer exclusive for most experiments

ATF Program Advisory & Users Meeting, October 6-7,2010

Nd:YAG Laser Evolution

- Stability, delivered energy, reliability always needed and compromise one another – the laser has a limited operating "parameter space"
- Capabilities and requirements introduced for new experiments may compromise other parameters
- However, the system now works better than any time in past decade because continuous learning and modification of weak points can somewhat increase capabilities Examples:
 - Routinely achieved energy stability <1% on cathode
 - Phase drift usually near 1 ps/day
 - Better symmetry of UV beam profile

ATF Program Advisory & Users Meeting, October 6-7,2010

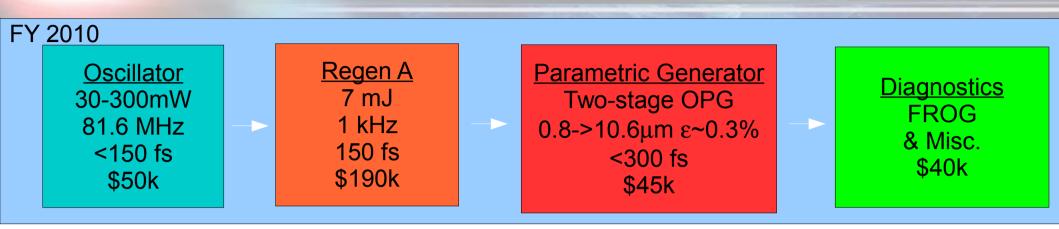

Drive Laser Central Role

- Generates primary facility user resources:
 - -high brightness electron beam -high power CO₂ laser pulses
- Timing: time structu

time structure & synchronization of above to one another and other facility equipment (i.e. delay generators, data acquisition, diagnostics)

- Diagnostics for experiments: e.g. lon generation plasma density interferometry
- Cathode cleaning, detector characterization, optical timing fiducial, etc.

ATF Program Advisory & Users Meeting, October 6-7,2010


New Drive Laser Goals

- Phase 1: Replace current short pulse CO_2 slicing scheme to generate facility-synchronized ultrashort pulses at 10 μ m wavelength
- Phase 2: Replace current Nd:YAG laser generation of UV pulses for photocathode operation
- Improve above two functions primarily in temporal domain shorter duration, broader bandwidth, lower timing jitter & drift
- Maintain or improve reliability & high uptime affects availability of both beam & staff

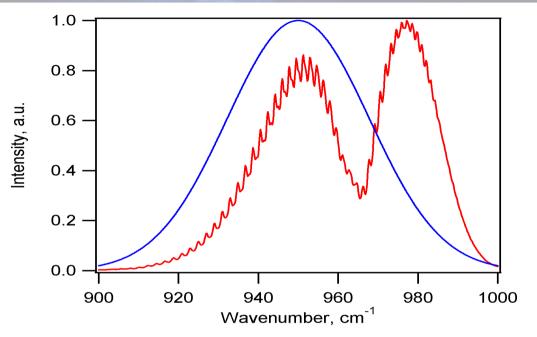
ATF Program Advisory & Users Meeting, October 6-7,2010

New Drive Laser Overview – Phase 1

- Fiber oscillator seeding for best stability and environmental insensitivity
- Ti:Al₂O₃ regenerative & multipass amplifiers for broad bandwidth, high energy near IR generation
- All diode-pumped system regulated supplies unlike most flashlamp pumped systems
- 1 kHz repetition rate removes seed timing limitation & enables more online monitoring & feedback
- Parametric generation for high MIR seed energy at shorter pulsewidth

ATF Program Advisory & Users Meeting, October 6-7,2010

New Drive Laser Phase 1 CO₂ Seeding


- State of the art has advanced to the level that Ti:Al₂O₃ ultrafast system can be more capable as well as smaller than the existing Nd:YAG system.
- Nearly all commercial system with standard products
- Vendor selected & order placed prior to end of FY2010

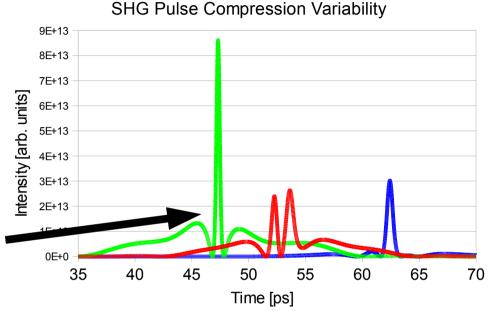
ATF Program Advisory & Users Meeting, October 6-7,2010

CO₂ Seeding Improvements

 Bandwidth/duration as needed for amplification over entire CO₂ rotational band

- Energy: 0.1 μ J/3 ps \rightarrow 40 μ J/350 fs & significantly higher contrast
- Stability: $\sim 20\% \rightarrow 2\%$
- Compactness means table more table space will be free after installation of new system

ATF Program Advisory & Users Meeting, October 6-7,2010


Benefits to Experimental Program

- •Immediately (1 year) obtain 5x higher CO_2 power \rightarrow higher a_0 e.g. ion beam energy increase
- Improved temporal resolution for PWFA interferometry, holography may be possible
- Ion beam generation experiment plasma density diagnostic pulses ~10x shorter, with lower jitter
- •Higher gradient for IFEL

CO₂ Laser Operational Benefits

- Current short pulse generation scheme is complex & multi-staged
- SHG compression scheme effective but difficult to monitor & control

- Frequent alignment restricts availability of system
- New system has no flashlamps, warm-up, or gas circulation issues
- Should be close to turn-key, simpler to diagnose & adjust
- Higher seed energy will simplify CO₂ amplifier chain

ATF Program Advisory & Users Meeting, October 6-7,2010

Phase 2 Capabilities

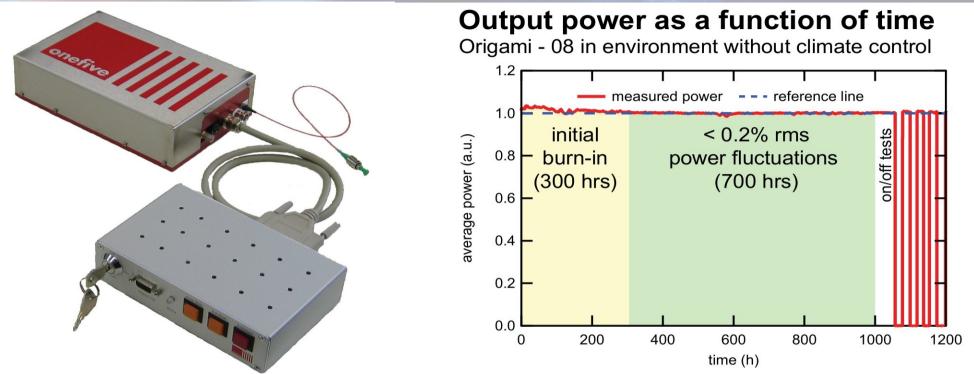
- Common or duplicate components include oscillator, regenerative amplifier, diagnostics & controls.
- Much will be characterized from Phase 1
- Higher energy options exist if deemed necessary for photocathode dependent upon efficiency of harmonic generator & longitudinal pulse shaper

ATF Program Advisory & Users Meeting, October 6-7,2010

Photoinjector Benefit - Physics

Pulse Duration	0.2 – 10 ps
Pulse Energy	>400 uJ
Repetition Rate	1 kHz
Stability	<2% RMS
Beam profile	M ² <1.5

 Short pulse: study 3D elliptical beam from photoinjector at low charges



- Stack pulses: achieve flat-top in time Lower emittance in high charge regime
- May finally obtain sufficient energy to do spatial profile flattening!
- But, energy stability may be greatest challenge. May need to implement feedback on noise spectrum <1 kHz.

ATF Program Advisory & Users Meeting, October 6-7,2010

Operational Benefits

- Downtime expected to be comparable to present system because of NEW components, diode pumping, reduced component count
- Most subsystems will be temperature regulated \rightarrow minimal warm-up
- Alignment drift, component degradation to be determined, but new system is smaller. Offline characterization possible before installation.

ATF Program Advisory & Users Meeting, October 6-7,2010

Integration Plan

- Phase 1 laser delivery in 5-6 months
- Infrastructure upgrades before delivery (clock, timing system, phase jitter diagnostic, mechanical utilities, control interface)
- Initial acceptance test within 1 month (vendor is local)
- Test CO₂ amplification with 10 μm transport line before disassembly of existing seed system
- Replace existing components on CO₂ table
- ~ 1 year to experimental running in new configuration
- Phase 2 as funding permits

ATF Program Advisory & Users Meeting, October 6-7,2010

ATF Present Drive Laser & Replacement

Igor Pogorelsky

CO₂ laser and experimental support

Mikhail Polyanskiy

Marcus Babzien

support

simulations, diagnostics, data acquisition

YAG laser, general optical diagnostics

Karl Kusche

Laser safety, computer controls

ATF Program Advisory & Users Meeting, October 6-7,2010

