Proposed project: Study of Hot Electron Transport and Subsequent Ion Acceleration using Overdense Gas Jet Target and Ultrafast TW CO2 Laser System

Subhendu Kahaly, F.Sylla, A. Flacco, V. Malka Laboratoire d' Optique Applique (LOA), Ecole Polytechnique, France

Vitaly Yakimenko, Igor Pogorelsky ATF, Brookhaven National Laboratory, USA

Planned experiments at BNL

(a) Ion detection, (b) Magnetic field detection, (c) Diagnostics for interferometry

Gasjet + Al foil target

Main pulse characteristics

Pulse parameters

- Wavelength (10.2 um)
- Pulse duration (3~6 ps FWHM)
- Pulse energy (3~4 J)
- Polarisation (circular)
- Beam diameter (2 inch)
- Has a 30 ns replica prepulse

Laser intensity 10^16 W/cm2 (@1 TW)

a_0 = 1.4 ~ 0.85

Focal conditions

- Parabola f = 150 mm
- f/# = f/3
- W_0 ~ 70 um

Forward ion spectra with Thomson parabola+MCP

1.Alpha

Typical ion traces from AI foil due to TNSA

• Accessing 3 orders in density from strongly underdense to highly overdense

• Signature of RPA? (1,2)

• To settle the issue charge resolved measurement is a must

• Effect of nozzle geometry and gas jet size controlling propagation

- 1. Laser energy conversion to solitons and monoenergetic proton in near-critical hydrogen plasma, V. Pogorelsky et al. Proceedings of IPAC'10, Kyoto, Japan
- 2. Monoenergetic proton beams accelerated by a radiation pressure driven shock, Charlotte A. J. Palmer, http://arxiv.org/pdf/1006.3163

Probe beam option

Pulse parameters

- SHG of the YAG pulse
- Wavelength (0.532 um)
- Pulse duration (14 ps FWHM for the YAG)
- Pulse energy (~ sufficient)
- Arrival time w.r.t CO2 beam (jitter less than 1~2 ps)

Ouration longer than the main pulse

Probed plasma is strongly
Underdence refraction effects
less

 $\ensuremath{\textcircled{\odot}}$ This probe has already been used for shadowgraphy and interferometry

Laser energy conversion to solitons and monoenergetic proton in near-critical hydrogen plasma, V. Pogorelsky *et al.* Proceedings of IPAC'10, Kyoto, Japan

BNL pump-probe set up with gas jet

Measuring the azimuthal magnetic field

2.B field

Motivation

• Capturing the rich physics of transport in *overdense* laser plasma

• Correlation of self generated B field with forward ion acceleration

• Space resolved time evolution of B field over a wide density range

Measurement technique has already been successfully applied to underdense laser plasma interaction

Measurement of Magnetic-Field Structures in a Laser-Wakefield Accelerator M. C. Kaluza *et al.* http://arxiv.org/abs/1007.3241

Faraday-Rotation Principle

• Probing of magnetic fields in plasma with linearly-polarized pulse:

 \Rightarrow Probe polarization rotation:

$$\phi_{\rm rot} = \frac{e}{2m_{\rm e}c} \int \frac{n_{\rm e}(\vec{r})}{n_{\rm cr}} \vec{B}(\vec{r}) \cdot \frac{\vec{k}_{\rm probe}}{k_{\rm probe}} ds$$

⇒ For *B*-field distribution we need to measure ϕ_{rot} and n_e all over the plasma space!!

http://arxiv.org/abs/1007.3241

Target configuration

3.Al ion

 Taking advantage of self focussing to reach high intensity

Tuning gas density to control interaction and hot electron source

• Look at the ion emission from foil back surface while the gas jet controls propagation

Gas jet target

• Of different nozzle diameters

Thin foil target

• Of varying thickness

