Single-shot interferometer: Development and Testing

Gerard Andonian, UCLA ATF Users' Meeting October 6-7, 2010 Brookhaven National Laboratory

Collaboration

- UCLA PBPL
 - G. Andonian, E. Hemsing, P. Musumeci, J. Moody, J.B. Rosenzweig
- RadiaBeam Technologies
 - A. Murokh, A. Ovodenko, M. Ruelas
- Spectrum Detectors (now Gentec-EO)
 - D. Dooley, M. Stout, S. Levingston
- Univ. of Georgia
 - U. Happek
- BNL ATF
 - M. Babzien, K. Kusche, R. Malone, V. Yakimenko

Outline

- Motivation
- Concept
 - Technical Specs
 - Detector
- Preliminary benchtop Results
- Possible sources at ATF for RTI
 Benchmarking
- Outlook

Real-Time Interferometer

- Light sources and advanced accelerators short beams
 - Velocity bunching, chicane compressors
 - Diagnosis of compressed beams (sub-mm) on a real-time basis
- Study radiative effects (CER, CSR, CTR) from short beams
 - Bunch length correlated to emitted radiation frequency spectrum
 - Advanced reconstruction tools
- Single-shot capability
 - Characterize jitter (shot-to-shot)
- Cross calibration with existing Michelson-type interferometer
 - Wealth of data for averaging
 - Studying phase drifts
- Reconstruction algorithm refinement
- Application: Non-destructive bunch length monitor
 - CER or CDR
 - Shot-shot longitudinal beam information
 - Improve overall beam performance
 - Feedback loop

Concept

- Analogous to Michelson interferometer except time-delay transformed into spatial delay
 - Crossing angle gives range of phase delays for two linearly focused beams
 - Multi-channel detector measures the interference between two beams
 - Autocorrelation in a single-shot
- Three components
 - Interferometer
 - Detector Array
 - Reconstruction Algorithm
- Hurdles
 - THz Optics
 - Alignment
 - THz transmission
 - Detector sensitivity
 - Retrieval algorithm is radiation-dependent
 - Need assumptions or prior knowledge (extra information)

Interferometer

- All reflective optics
 - Minimize losses
- Beamsplitter for small mixing angles
 - Mirror for larger angles (3.5deg)
 - Mirror mount conflict
- Polarizer for CTR studies
- Cylindrical mirror
 - 1D focusing
- Detector Array

Detector Array

- Spectrum Detector
 - Formerly of Molectron
- 32 channels
 - Convenient electronics
 - 500µm center-center
 - 1mm length
 - 16mm total
 - Coated for maximum absorption
- Specified for ~1nJ sensitivity
 - 9µm thick LiTaO3 promising
 - too fragile
 - 25µm thick LiTaO3
- Integrated DAQ
 - Tested up to 10Hz operation
 - Possibility to go to 100Hz
- Portable

la Holp							
Instrument Controls	nergy Plot Sensors Vi	tual Comm Port Controls					
Renge 2mJ 〒	Triggered	Trigger Channel Ch 1 7	Query Freemans Yorsky		MSP430 Finveware Version 015		33 Firvenkere Version 0
Trigger SL		Trigger Source Internet 🗠 Query Instrument 40			Instament ID Char SDN L106 Instrument 16		imels in Lise
User Wavelength (nm)	Wavelangth Compensation	Trupper Polanty Ridna Edgo 🔬 👘	Send Dr	104	Data Stream War ON DN	ve Comp Detailogging DN ON	Frequency (Hz) 10.0 Hz
Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8
0.497 mJ	0.555 mJ	0.499 mJ	0.553 mJ	0.499 mJ	0.552 mJ	0.497 mJ	0.553 m.
Chantel 9	Channel LD	Channel 11	Channel 12	Channel 13	Channel 14	Channel 15	Overviel 15
0.498 mJ	0.553 mJ	0.497 mJ	0.553 mJ	0.499 mJ	0.553 mJ	0.499 mJ	0.553 m.
Chansel 17	Channel LD	Channel 19	Channel 20	Chernel 21	Channel 22	Channel 23	Channel 24
Chansel 25	Channel 26	channel 27	Channel 23	channel 29	Channel 30	Channel 31	Channel 32

Interferometer Results

• HeNe

- Alignment
- Visually observed interference pattern
- Co2
 - Golay cell on translation stage
 - Benchtop, near CW
 - Fine steps
 - Sharp peak at 10.6µm
 - 500µm steps
- THz source at UCLA
 - P. Musumeci and J. Moody
 - Optical rectification
 - .75THz peak (~µJ)
 - Characterized with BLIS

CO2 interferogram and FT (10.5µm peak)

Full RTI Results

- Detector array test
 - CO2 laser
 - spot size ~17mm
- Peaks separated by ~2.3mm
 - Mixing angle~0.26deg
- FT shows peak at 10.4µm
- Better results if array is flooded (bigger beam)
- Is detector sensitive enough for RTI application?
 - Currently being studied at UCLA THz lab
 - Continue at ATF to characterize coherent radiation sources

CO2 interferogram with full array

Characterization of Coherent Radiation Sources at ATF

- ATF offers many sources
 - Different properties (advantages/disadvantages)
- Compressor and pulse train mask allow many THz radiation sources
- CTR
 - Broadband
 - Higher energy (~10µJ)
 - Cross-calibrate with BLIS
- CER
 - Broadband
 - Lower energy (~1µJ) due to transport
 - Outside interlocked hall
 - Manual manipulations
 - Nondestructive (run parallel with other expt)
- CCR
 - Cerenkov radiation from DWA
 - Narrowband, tunable
 - Setup is already in place
 - Energy 1-10µJ
- Need to expand beam to fill detector array
 - THz optical telescope using OAP lenses

CER spectrum

2.5

2.0

1.5

1.0

0.5

0.0

Conclusions

- RTI has demonstrated operations at CO2 and THz regimes
- Bunch length monitor
 - Calibrate against other methods
 - Online feedback tool
 - Benchmarking simulations in real time
- Reconstruction algorithms
 - Assumptions needed to fill in gaps in spectra
 - Low and high frequency components
 - Correction factors
- Testing at ATF using multitude of CR sources

Backup slides

Motivation

- Generation of compressed sub-micron beams
 - Study radiative effects (CSR, CER) emitted from short beams
 - Continue UCLA Neptune compressor physics studies in acceleration field dominated regime (space charge -> coherent radiation)
 - May greatly impact performance of future compressors and FELs (e.g. microbunching instability)
 - Use CER as non-destructive bunch length monitor

Parmela-Elegant simulation longitudinal phase space of beam, with compression from 50A to 1.5 kA.

Chicane Compressor

- Designed and Constructed at UCLA
 - Modeled with Amperes
 - Engineering, safety concerns addressed by ATF
- Installed and operational at BNL ATF
 - Add to ATF core capabilities
 - SASE FEL, wake field studies
 - Other experiments
- Field = 0.2 T ; Bend Radius = 1.2m
- Extensive Simulation work
 - TREDI, Field-Eye, Parmela, Elegant, Quindi
 - Compress from 350 μm 30 μm
- Study basic beam physics
 - X-ray FEL, linear collider, etc.
 - bunch diagnostic, phase space degradation

Chicane Radiation Results

Polarization

- sigma and pi polarizations
 - radial polarization
 - CER + CSR
- THz spectrum
 - Zemax transport calculations include water absorption
 - Data (green dots)
 - added energy spread used as "fitting parameter"
 - 0.36% sliced energy spread in sims

