### DWA as a radiation source

Gerard Andonian, UCLA October 6-7, 2010 ATF Users' Meeting Brookhaven National Laboratory

### Motivation

- High gradient DWA applications
  - HEP
  - Radiation Source
  - Advanced accelerator for future FEL
    - ~GV/m fields reduce size of machine
    - Larger scales (THz), relax emittance, higher charge beams
- Relevant Issues in DWA research
  - Determine achievable field gradients
  - High energy gain in acceleration
  - Transformer ratio enhancement
  - Resonant excitation of structure
  - Dielectric/metal heating issues
  - Cladding composition, thickness
  - Periodic structure development
  - Novel materials, meta-materials
  - Alternate geometries (slab)
  - Transverse modes and beam-breakup



$$E \sim \frac{N_b}{\sigma_z^2}$$

Accelerating gradient scales with high charge, short beams

### **Dielectric Wakefield Accelerator**



6.00E+009 3.00E+009 -3.00E+009 -6.00E+009 -9.00E+009 -1.20E+010 0.0014 0.0016 0.0018 0.0020 0.0022 Z(m) Ez on-axis, OOPIC • Electron bunch ( $\beta \approx 1$ ) drives wake in cylindrical dielectric structure

- •Dependent on structure properties
- Generally multi-mode excitation
- Wakefields accelerate trailing bunch

• Peak decelerating field  

$$eE_{z,dec} \approx \frac{-4N_b r_e m_e c^2}{a \sqrt{\frac{8\pi}{\varepsilon - 1}} \varepsilon \sigma_z + a}$$

Transformer ratio (unshaped beam)

$$R = \frac{E_{z,acc}}{E_{z,dec}} \le 2$$

### Previous experimental work

- **SLAC FFTB** 
  - Study breakdown limits
  - Q~3nC, E=28.5GeV, σ,~20μm
  - SiO<sub>2</sub>, a=100,200µm, b=325µm, L=1cm
  - Beam can excite fields up to 13GV/m
- UCLA Neptune
  - CCR as a tunable THz source
  - Q $\sim$ 200pC, E=14MeV,  $\sigma_{2}$ ,  $\sim$ 200 $\mu$ m,
  - PMQs to focus down to  $\sigma_r \sim 80 \mu m$
  - Varied outer radius (b=350µm,400µm),L=1cm
  - ~10µJ of THz, narrowband
- UCLA experience in...
  - Short focal length PMQ
  - Preparation and fabrication of DWA structures,
  - Mounting, alignment of structures
  - Collection and measurement of emitted CCR

### SLAC FFTB 2008





(2008)





# Experiment description at ATF



- Pulse train generated in F-line with mask
- Phase feedback loop (0.5deg)
- CTR measurement of multipulse bunch spacing
- DWA mount and alignment in old plasma chamber
- CCR measurement
- Hole in OAP allows simultaneous energy spectrum measurement

### Top view



### Actuator



### Capillary mount + horn



# Sextupole studies – May 2010

- Goal: Mitigate nonlinear dispersion to generate uniform bunch spacing
- Experience from VISA FEL
  - Exploited second order dispersion for high current
  - Saturation at 800nm
- Elegant simulations
  - Generate bunch train externally
  - Not including full start-to-end
  - Include CSR effects
- Beam Chirp
  - Energy spread <1%</li>
  - Tail has higher energy
- CTR autocorrelation
  - Width of FT spectrum correlates to uniformity of bunch spacing

#### Initial longitudinal phase space



### Final phase space – no sextupoles



#### Dispersion with sextupole



#### Final phase space –sextupoles













### CCR studies – June2010

### • Parameters

- SiO2
- Al coated (vapor deposition)
- a=100μm, b=150μm
- Fundamental excitation
  - Bunch spacing set to  $\sim$ 500 $\mu$ m
  - 490µm fundamental
  - 3 bunches + witness
  - Wrong chirp
- Attempted to observe acceleration simultaneously
  - Used "wrong" side of chirp (low energy at tail)
  - Figures inconclusive





OOPIC simulations for multibunch + witness beam Peak field = 55MV/m



CCR interferogram and spectrum (peak ~500µm)

# CCR harmonic – Aug2010

- Bunch spacing tuned to harmonic
  - Spectral peak ~200µm
  - 3 or 4 bunches
  - Selective excitation of harmonic
- Deflecting mode
  - 300µm peak
  - Misalignment in beam trajectory through tube
  - Confirmed in simulations
- Beam phase stability
  - Feedback loop
  - ~0.5deg target



CTR interferogram and FT (bunch spacing ~200µm)



CCR interferogram and spectrum (peak~200 $\mu$ m)

# Follow-on measurements at BNL ATF

### (2010-11)

- Use "new" DWA tubes
  - a=50μm, b=100μm, L=1cm
  - SiO2 and CVD Diamond
  - Euclid Tech Labs (A. Kanaryekin)
  - Al-coated at UCLA
  - Accel. fields >100MV/m
- Small beam spot size (~10µm) Elegant Studies
  - need PMQ (125T/m)
  - Triplet configuration
  - Symmetric lattice to recollect beam for diagnosis
  - spectrometer
- Fabricate mask for correct bunch spacing and chirp for acceleration demonstration
  - Allow for harmonics studies
- Also study single compressed bunch
  - Low charge (mask selection)
  - High charge (chicane compressor)





# Conclusions

- Progress in DWA as radiation source
  - May2010: Sextupole studies
  - June2010: Fundamental excitation
  - Aug2010: Harmonic excitation, deflection mode observation
- Leverage off recent results
  - Use smaller tubes
    - a=50µm, diamond (Euclid Tech)
  - Employ PMQ focusing
  - Observe acceleration
  - Continue to build experience in
    - Fabrication, mounting DWA
    - Radiation collection, transport
- ATF is unique because it offers...
  - Pulse trains
  - Compressed beams
  - CR diagnostics in place (interferometers, bolometers)

# Acknowledgements

- UCLA
  - G. Andonian, J.B. Rosenzweig, P. Niknejadi, G. Travish, O. Williams, K. Xuen
- USC
  - P. Muggli
- Euclid Tech
  - A. Kanaryekin
- SPARCX
  - M. Ferrario
- BNL ATF Thanks!
  - M. Babzien, M. Fedurin, K. Kusche, R. Malone, V. Yakimenko