ATF Solid State Laser Operations

Igor Pogorelsky

Mikhail Polyanskiy

Marcus Babzien

Karl Kusche

CO₂ laser and experimental support

CO₂ laser, simulations, diagnostics & data acquisition

Solid state lasers, optical diagnostics

Laser safety, computer controls, and experimental support

ATF Program Committee/Users Meeting, April 26-27, 2012

Current Nd:YAG Parameters

Energy: (triple pulse mode)	
UV on cathode	0-30 μJ x 1 pulse
IR to CO ₂ laser	10 mJ x 2 pulses
Laser output: total IR	30 mJ
IR to gun	7.5 mJ
Green	2.5 mJ
UV	500 μJ
<u>Energy: (pulse train mode) IR</u>	~100 mJ / 20 pulses
Pulse duration (FWHM):	
Oscillator IR	7 ps
Amplified IR	14 ps
Green	10 ps
UV	

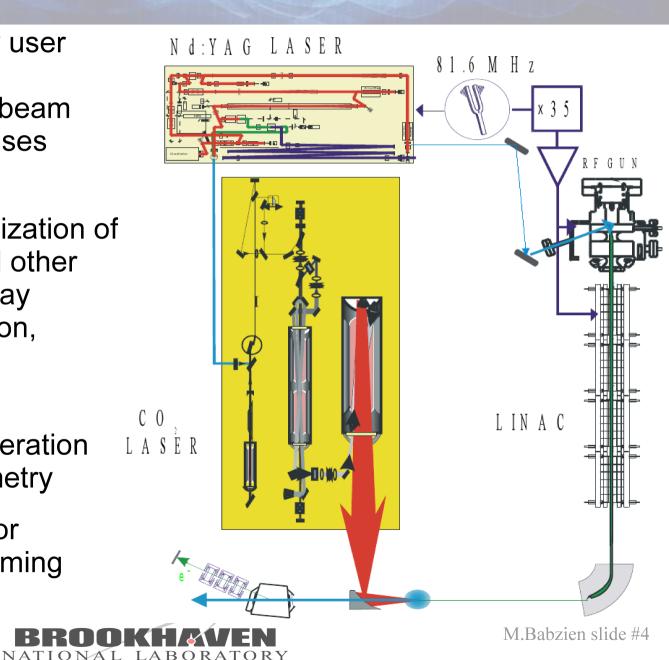
<u>Transverse Distribution:</u> Range of beam size on cathode (Ø) Top-Hat Beam Profile Modulation (P-P)	0.2 - 3 mm <50%
Repetition rate	1.5, 3 Hz
<u>Shot-to-shot stability (rms):</u>	
Timing	<0.2 ps
Energy	<0.8 %
Pointing (fraction of beam Ø)	<0.3%
Drift (8 hour P-P)	
Timing	<15ps
Energy	<5%
Pointing (fraction of beam Ø)	<1%

ATF Program Committee/Users Meeting, April 26-27, 2012

Nd:YAG Running Time / Reliability

- Operating schedule demands increased since last meeting; laser delivered significantly more running time (67-86%)
- Now provide two pulses dedicated to CO₂ slicing in addition to photocathode pulse, no optical damage encountered in amplifiers

Phase drift increased, necessitated feedback via Linac & RF system
 ATF Program Committee/Users
 Meeting, April 26-27, 2012
 BROOKHAVEN
 NATIONAL LABORATORY

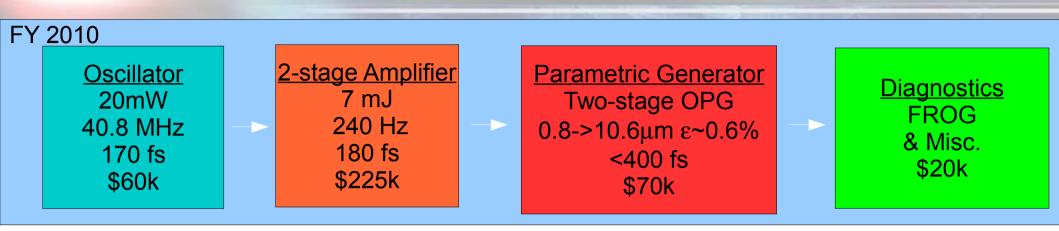

Drive Laser Central Role

Generates primary facility user resources:

-high brightness electron beam -high power CO₂ laser pulses

- Timing: time structure & synchronization of above to one another and other facility equipment (i.e. delay generators, data acquisition, diagnostics)
- Diagnostics pulses for experiments: e.g. lon generation plasma density interferometry
- Cathode cleaning, detector characterization, optical timing fiducial, etc.

ATF Program Committee/Users Meeting, April 26-27, 2012


New Drive Laser Goals

- Phase 1: Replace current short pulse CO₂ slicing scheme to generate facility-synchronized short pulses at 10 μm wavelength
- **Phase 2**: Replace current Nd:YAG laser generation of UV pulses for photocathode operation
- Improve above two functions primarily in temporal domain shorter duration, broader bandwidth, lower timing jitter & drift
- Maintain or improve reliability & high uptime affects availability of both beam & staff

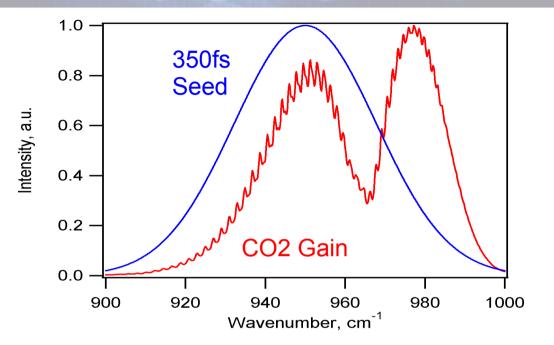
ATF Program Committee/Users Meeting, April 26-27, 2012

New Drive Laser Overview – Phase 1

- Fiber oscillator seeding for best stability and environmental insensitivity
- Ti:Al₂O₃ regenerative & multipass amplifiers for broad bandwidth, high energy near IR generation
- All diode-pumped system regulated supplies unlike most flashlamp pumped systems
- 240 Hz repetition rate enables more online monitoring & feedback; serving multiple users via pulse switching in time domain
- Parametric generation for high MIR seed energy at shorter pulsewidth

ATF Program Committee/Users Meeting, April 26-27, 2012

New Drive Laser Phase 1 CO₂ Seeding


- State of the art has advanced to the level that Ti:Al₂O₃ ultrafast system can be more capable as well as smaller than the ATF Nd:YAG system.
- Nearly all commercial system with standard products
- Vendor selected & order placed prior to end of FY2010

ATF Program Committee/Users Meeting, April 26-27, 2012

CO₂ Seeding Improvements

 Bandwidth/duration as needed for amplification over entire CO₂ vibrational band – bandwidth filtering may be needed in the near term

- Energy: 0.1 μ J/3 ps \rightarrow 40 μ J/350 fs & significantly higher contrast
- Shot-to-shot Stability: $20\% \rightarrow \sim 2\%$
- Compactness means more table space will be free after installation of new system (although more crowded during commissioning)

ATF Program Committee/Users Meeting, April 26-27, 2012

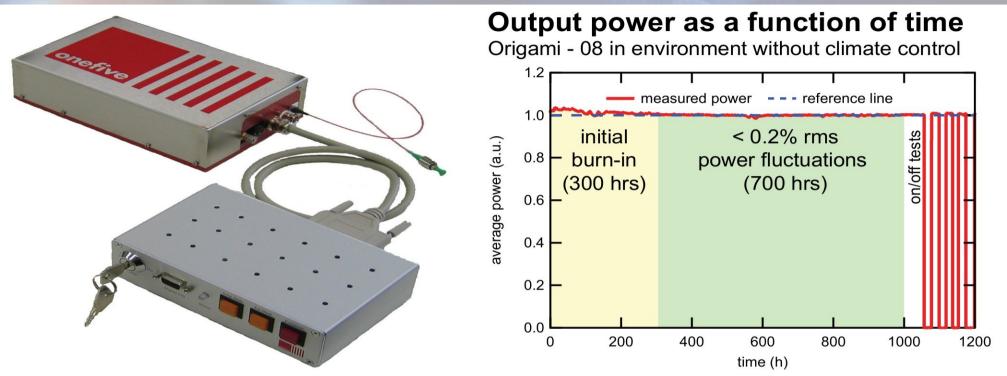
Planned Benefits to Experiments

- •Immediately (1 year) obtain 5x higher CO_2 power \rightarrow higher a_0
- e.g. ion beam energy increase
- Improved temporal resolution for PWFA interferometry, holography may be possible
- Ion beam generation experiment plasma density diagnostic pulses ~10x shorter, with lower jitter
- •Higher gradient for IFEL experiments

Anticipated Phase 2 Capabilities

- Duplicate components include oscillator, amplifier, some diagnostics & controls.
- Much will be characterized from Phase 1

Planned Photoinjector Benefit


Pulse Duration0.2 - 10 psPulse Energy>600 uJRepetition Rate240 HzStability<2% RMS</td>Beam profile $M^2 < 1.5$

- Short pulse: study 3D elliptical beam from photoinjector at low charges
- Stacked pulses: achieve flat-top in time Lower emittance in high charge regime
- Spatial profile flattening possible with liquid crystal modulator

ATF Program Committee/Users Meeting, April 26-27, 2012

Planned Operational Benefits

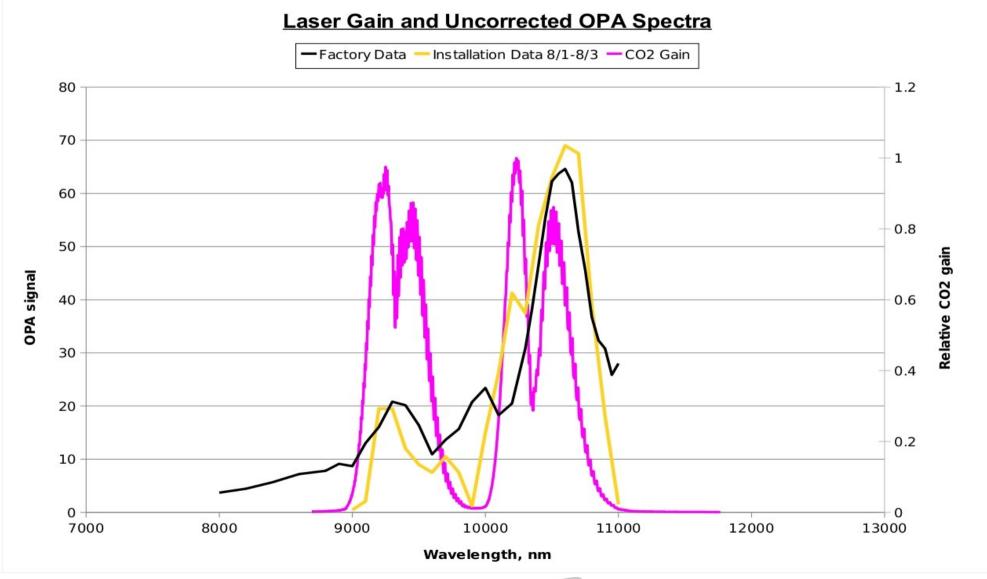
- Downtime expected to be comparable to present system because of newer components, diode pumping, reduced component count
- Most subsystems will be temperature regulated \rightarrow minimal warm-up
- Alignment drift, component degradation to be determined, but new system is smaller. Offline characterization possible before installation.

ATF Program Committee/Users Meeting, April 26-27, 2012

Upgrade Status: Phase 1

- Infrastructure upgrades completed as required (clock, timing system, mechanical utilities, personnel protection interlocks)
- Phase 1 system received July 2011 after some unanticipated delays
- Acceptance testing confirmed that design parameters could be achieved and identified items requiring improvement
- Currently working with vendor to develop long-range plans for system support
- System has been installed in temporary enclosure in CO2 room
- Preparations for initial amplifier tests and integration of diagnostics (energy, spectrum, pulseshape) are in progress
- Expect amplification test results this fiscal year

ATF Program Committee/Users Meeting, April 26-27, 2012

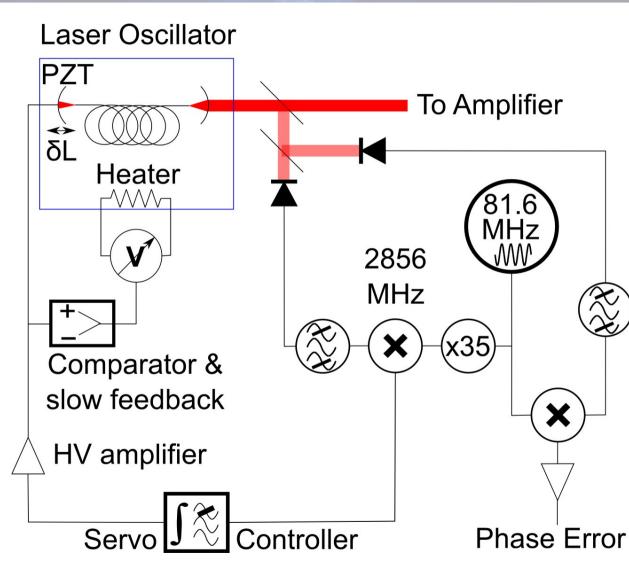


Phase 1 Testing Summary

- Oscillator provides turn-key operation after quality control issues were resolved
- Phase locking in progress
- Amplified NIR energy level & stability within specification:
 7mJ with 0.4%σ
- Parametric conversion: Measured 40uJ pulse energy in broad, tunable spectrum

Phase 1 Tests – OPA Output

ATF Program Committee/Users Meeting, April 26-27, 2012


Phase Locking Studies

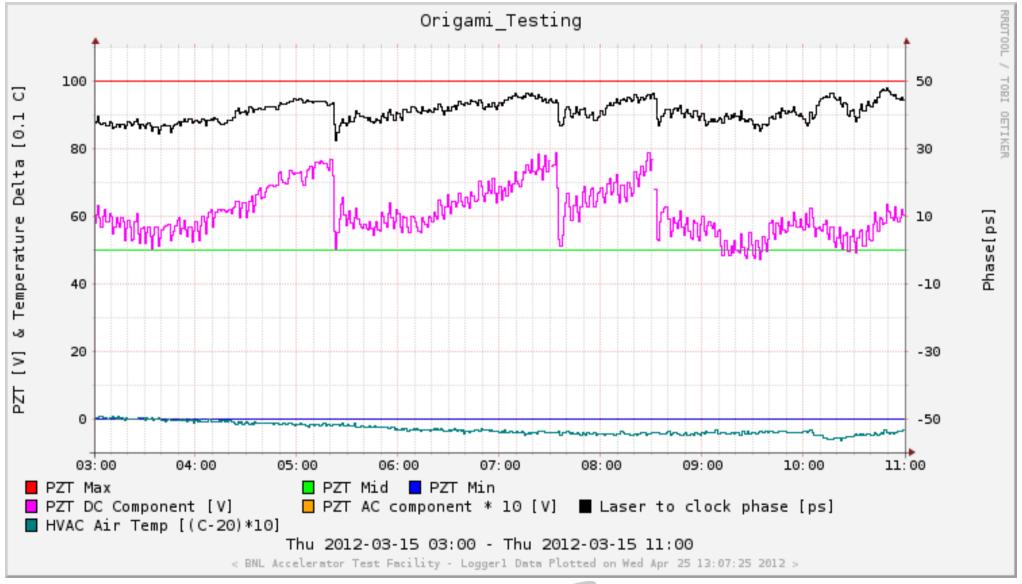
- Fiber oscillator turnkey, but requires improved RF electronics
- Studied existing solutions, but few had significant usage in real world service at accelerator with our requirements & parameters
- Decision made to assemble phase lock loop in-house
- Component characterization and testing in progress

Phase Locking Overview

- Mixer inside PLL generates phase signal for locking
- Out-of-loop mixer independently measures error
- Currently locking laser to crystal clock
- Later, lock second laser oscillator via RF PLL
- Distribute optical signals via singlemode fiber to minimize drift

ATF Program Committee/Users Meeting, April 26-27, 2012

PLL Testing


- dΦ/dT measured for all components
- Temperature-stabilized heat sinks for mixers running stable to 0.01°C
- Chassis enclosure for full system nearing completion with ~0.1°C --> temperature stabilization
- Critical component AM-PM conversion measured where manufacturer specification not available

ATF Program Committee/Users Meeting, April 26-27, 2012

Current(Best) PLL Performance

ATF Program Committee/Users Meeting, April 26-27, 2012

Phase 2 Status

- Purchase completed end of FY2011
- Factory testing performed with different seed oscillator
- Complete shipment received from vendor
- Unpacking to begin when finished with first system
- Acceptance testing and UV transport line construction required before commissioning with photocathode gun
- Purchase of second seed oscillator required for simultaneous operation of both CO₂ and gun laser systems (\$60k) still pending further tests

ATF Program Committee/Users Meeting, April 26-27, 2012

ATF Solid State Laser Operations

Thank you

Igor Pogorelsky

Mikhail Polyanskiy

Marcus Babzien

Karl Kusche

CO₂ laser and experimental support

CO₂ laser, simulations, diagnostics & data acquisition

Solid state lasers, optical diagnostics

Laser safety, computer controls, and experimental support

ATF Program Committee/Users Meeting, April 26-27, 2012

