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Abstract.  Laser particle acceleration (LPA) involves the acceleration of particle beams by
electromagnetic waves with relatively short wavelength compared with conventional radio-
frequency systems.  These short length scales raise the question whether space charge effects
may be a limiting factor in LPA performance.  This is analyzed in two parts of an accelerator
system, the acceleration sections and the drift region of the prebuncher.  In the prebuncher,
space charge can actually be converted to an advantage for minimizing the energy spread.  In
the accelerator sections, the laser fields can compensate for space charge forces, but the
compensation becomes weaker for high beam energy.

INTRODUCTION

Laser particle acceleration (LPA) concepts resemble radio-frequency (RF) linear
accelerators in that a travelling wave is set up to move synchronously with the particle.
Efficient acceleration in both LPA and RF systems requires that the spread of the
particles along the wave be somewhat smaller than the wavelength, λ = 2πc/ω (c is the
speed of light in vacuum; ω is the frequency of the driving wave), or else that the
particles be organized into narrow bunches separated by λ.  However, LPA’s differ
from RF systems in that the wavelength corresponding to optical frequencies is on the
order of 10−6 to 10−5 m rather than 10−2 m.  Thus microbunching on a very fine scale is
necessary.  In RF accelerators, the small length scale is the transverse dimension of the
particle beam.  For a typical high-quality beam of moderate energy (50-100 MeV) the
transverse dimension may be 200-500 µm, which is smaller than the needed
microbunching scale.  However, in an LPA with, e.g. λ = 10 µm, the microbunching
scale (somewhat less than 10 µm) is the smaller length scale.  The appearance of fine
scales raises the issue of space charge effects.

The principal space charge effect in an RF linac is a defocusing tendency since the
smallest length scale is the transverse dimension of the beam.  However in an LPA the
smallest length scale is longitudinal; hence the principal space charge effect is a de-
bunching tendency.  Moreover, the smaller length scale in an LPA makes space charge
inherently more difficult.  We consider two elements of an LPA system where space
charge debunching may be important.  One is in the accelerator sections themselves,
and the other is in the drift regions between accelerator sections.  The largest drift
region is at the upstream end of the system where the initial microbunching is first
created.



In this paper we analyze the de-bunching effect of space charge in (1) the
prebuncher, and (2) in the acceleration sections.  The dynamics of debunching are
analyzed using quasi-one-dimensional models; the transverse beam dynamics are
analyzed neglecting space charge.  These results are applied to the practical case of the
STaged ELectron Laser Acceleration (STELLA) experiment (1) on the BNL
Accelerator Test Facility.

SPACE CHARGE IN THE PREBUNCHER

The prebuncher may be the system element most vulnerable to space charge
because there is no longitudinal force to oppose space charge effects.  Therefore, the
only thing opposing space charge forces is inertia.  Fortunately, the effective “mass”
for relative longitudinal motions is γ3me (γ is the relativistic factor and me is the
electron rest mass).  A simple method of prebunching, shown in Fig. 1, is composed of
an energy modulator (e.g. an inverse free-electron laser) followed by a drift section.  A
macrobunch  with little  energy spread  enters  the modulator  and receives  an energy
modulation with longitudinal periodicity length ~λ (laser wavelength).  Thus, within
each  segment  of length  λ,  particles  behind  the  segment  center move slightly
faster,
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FIGURE 1.  Idealized prebunching arrangement.



while those ahead move slightly slower.  Then in the drift section the faster particles
catch up while the slower slip back, gathering them into microbunches.

In this section we show that (1) space charge forces can be compensated by
adjusting the strength of the energy modulator to allow effective microbunching, (2) a
second level of compensation can reduce the energy spread.  The latter is a positive
byproduct of space charge:  a coherent energy modulation is required to produce the
initial bunching; space charge effects can reduce or eliminate this energy spread.  It
may be possible to both generate short microbunches and minimize the energy spread.

Estimate of space charge debunching

It is helpful to begin with a simple scaling estimate.  Longitudinal forces from
space charge cause oscillations at the relativistically-corrected plasma frequency, ωp =
(µ0c

2e2n/meγ3)1/2, where µ0 is the free-space permeability; n, −e are the electron density
and charge.  Space charge effects become significant if the transit time through the
drift region, Ld/c, (Ld is the drift section length) is comparable to or exceeds the plasma
oscillation time, 1/ωp. i.e. if ωpLd/c ~ 1.  Accordingly, define the space charge
parameter:

 222 cLdpSC ωσ ≡ ; (1)

if σSC ~ 1 or more, space charge will be important in the prebuncher.  Since σSC ∝ n, a
practical expression for it is found once the density is identified.  The macrobunch
properties are charge QM, length lM, and normalized emittance, εN.  Note that in an
LPA, the macrobunch length lM (usually in mm) is much longer than the microbunch
length (< λ/2).  The charge is related to the density by QM = enAlM, where A is the
cross-sectional area of the beam.  Suppose A = πεNLd/γ, which is the characteristic area
of a focused beam over a drift distance Ld:  this area is proportional to the geometric
mean of the waist area and the far-field area at a distance Ld from the waist.
Combining these gives the density n = γQM/πeεNLdlM.  Then
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where re = e2µ0/4πme is the classical electron radius.



Quasi-one dimensional (1D) model

Since the thickness of each microbunch lµ (< λ/2) is much smaller than the
transverse beam dimension, the longitudinal motion in response to space charge effects
is approximately 1D.  We therefore adopt the 1D model, which has been checked
elsewhere (2).  Divide the beam into segments of length λ, and consider electrons
within a single segment.  Define a longitudinal coordinate in the moving frame of the
segment, ζ ≡ z − z0(t), where z0 is the segment center and |ζ| ≤ λ/2 within the segment.
Identify ζ  with individual electrons in the segment. The initial energy modulation is
sinusoidal in ζ.  We approximate this crudely as a saw-tooth form, γ = γ −∆γ(2ζ/λ),

with corresponding velocity modulation ∆uz = c(∆γ/γ3)⋅2ζ/λ, where γ denotes the

mean value, and ∆γ is the amplitude of the energy spread.  This is the 1D reduction of
the spheroidal bunch model (3).  The sawtooth model admits a self-similar solution.
The drifting electrons gather into a microbunch, where ±lµ(t)/2 is the position of the
outermost electrons.  Then within the bunch, |ζ| ≤ lµ/2:

         µλ lAAnn ii= ;    dtd)(uz µµζ ll= ;   µζλω l)eAAm(E ipez
2−= . (3a, b, c)

As in Fig. 1, A(z) is the beam cross-sectional area; and Ai, ni denote initial values.
Hereafter we adopt t~ ≡ ct/Ld as the dimensionless time variable, with 0 ≤ t~ ≤ 1 in the
drift section.

The amount of microbunching (which varies with t~ ) is expressed as a phase
spread, ψµ ≡ 2πlµ /λ.  Before bunching begins, ψµ = 2π, and the goal is to achieve as
close to ideal microbunching (ψµ = 0) as possible.  Then the equation of motion for
ψµ( t~ ) and its initial conditions are

)t~(AAt~dd iSCσπψ µ 222 = ,

(4)
                      ψµ(0) = 2π,      3

0 4 γλγπψψ µµ idt~i L)t~dd()( ∆−=≡′ = .

Nominally only half the modulated electrons are in a phase range for which they gather
into a bunch; electrons in the other half tend to spread out.  Therefore, in the space
charge parameter (Eqs. 1, 2) half the macrobunch charge should be used.

Consider the beam optics in the drift section.  The prebuncher (Fig. 1) is divided
into two drift regions:  before “1” and after “2” the focuser (“triplet”).  The width w(z)
of a drifting beam is 2
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2 4 )Zz(Ww ,,, −+= θ .  In each region, W, Z are the waist

width and position, and θ is the asymptotic divergence angle.  The normalized
emittance is εN = γWθ/2. For a circular beam, the area A = πw2/4 is



( ) ( )221)( dww LZt~AAAt~A −+= ε (5)

where Aw ≡ πW2/4, and γπεε dN LA ≡ .  Regions 1 and 2 have the same Aε but different

Aw, and areas match at the “idealized” triplet location, dm Lzt~ = .

These equations have an analytic solution of the form in terms of two factors J, J’
that depend on the beam optics,

( ) ( ) JSCif
′+′=′ σπψψ µµ 2 , ( ) ( ) JSCif

σπψπψ µµ +′+= 2 (6a, b)

For a constant area beam A = Ai:  J, J’ = 1.  Focusing accentuates space charge effects
so that J, J’ > 1 and depend on the beam optics.  Both are largest when the second
focus lies before the end of the drift section because the second beam waist lies within
the drift region.  Their analytic forms are given in Ref. (2)

Space charge affects both bunching and energy spread.  From Eq. 6b the bunching
(ψµ)f can made zero (ideal case) by making (ψµ’ )i more negative.  This is done by
increasing the initial energy modulation.  This also reduces the final energy spread,
proportional to (ψµ’ )f (Eq. 6a).  By adjusting the focusing geometry (triplet and second
focus locations), which modifies J, J’, one might simultaneously achieve maximal
bunching [(ψµ)f → 0] and eliminate the energy spread introduced by the prebuncher
[(ψµ’ )f → 0].

Practical example

We apply this theory to estimate space charge effects in the STELLA experiment,
which includes a prebuncher (inverse free electron laser) and accelerator section
(inverse Cerenkov acceleration), both driven by a 10.6 µm wavelength laser.  Table I
lists the beam optics parameters in the prebuncher; for this example the space charge
parameter is σSC = 0.55 (accounting for the factor of two effective reduction in the
charge). Consider an example where the initial modulation and second focus location
are chosen for dual compensation, i.e. maximal bunching and minimal final energy
spread.  Suppose the second waist is located at Z2/Ld = 0.985, i.e. just inside the
downstream end of the drift section.  Then in this idealized model the final bunching
and  energy spread  are  perfect, i.e. (ψµ)f  = 0 and (ψµ’ )f  = 0, respectively.  Dual
compensation, (spatial and energy spread reduction) can only be achieved if the
macrobunch charge is large enough.

This analysis is based on the 1D model.  The reduction factor accounting for two-
dimensional effects is F2D ≈ 1/(1+1.1γlµ/w).  At the triplet (z ≈ zm, lµ ≈ 0.6λ), F2D ≈
2/3; and at the second waist (z ≈ 0.98Ld, lµ ≈ λ/10), F2D ≈ 2/3.  Thus the 1D model



overestimates the space charge effect by a factor of ~ 3/2.  Accounting for 2D effects,
this would corresponds to a macrobunch charge of QM ≈ 0.225 nC.

TABLE 1.  Beam optics parameters in STELLA
Relativistic parameter γ = 80 Drift section length Ld = 2 m
Normalized emittance εN = 1 (π mm-mrad) First waist position ZI/Ld = −0.125
Macrobunch charge QM = 0.15 nC Focuser position zm/Ld  = 0.6
Macrobunch length lM = 3 mm

SPACE CHARGE IN THE ACCELERATOR

In the acceleration sections, the electromagnetic fields that accelerate and focus the
beam produce bunching forces.  These can counteract space charge debunching effect.
However, since in a practical LPA system there will be many acceleration sections, the
inertial effect is unimportant.  Thus the question is whether the laser-induced bunching
is adequate to compensate for space-charge debunching.  This question is again
addressed using a quasi-1D, sharp-boundary bunch model.

Generic laser fields and Lorentz force

Our interest is in the laser fields in the e-beam path , i.e. very near the axis.  A
radially polarized, axisymmetric laser can be expressed as a superposition of modes
described by the Bessel functions J0 and J1.  The propagation vector of each mode k
has the same amplitude |k| = ωN/c, but different angle θ  to the z axis, (N is the index
of refraction of the medium).  Generally the dominant modes are clustered near a
single angle θL.  Thus, near the axis the laser wave can be approximated as a single
Bessel mode with θ ≈ θL.  Its nonzero components are
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where E0 = const; the components of k are LLr sinNkk θ=  and LLz cosNkk θ=  with kL

= ω/c = 2π/λL (λL is the vacuum wavelength).  The phase function is ztL κωψ −=
( )zcosNctk LL θ−= .  For later use we define the reference electron (subscript R) as

one which runs along the z-axis and is perfectly synchronous (ψ = const).  Since z =
βct + const (for constant relativistic parameter β), the synchronism condition is

1=LR cosN θβ .  If the e-beam path is small enough to lie well within the “Bessel spot”
of the J0 function, krr << 2.405, then the small argument approximations can be used:



       ψsin
rk

EE z
r 20−≈ ,      ψcosEEz ⋅= 0 ,      ψθ sin

rkN
EcB L

2

2

0 ⋅−= (8a, b, c)

Equations of motion

The equations of motion for a relativistic electron are

( ) Lecm
dtc

d
F=βγ2 , β=

dtc

dr
(9a, b)

where r is its position and velocity, and β ≡ v/c, β = (1−1/γ2)1/2.  The Lorentz force, FL

= –e(E+β×cB), retaining first order components, is

( )zL
L

Lx Ncossin
xNk

eEF βθψ +−−=
20 , ψcoseEFLz 0−= (10a, b)

where FLy is the same as FLx with x replaced by y.  The phase acts as the longitudinal
coordinate of an electron.  Its evolution is governed by

( )LzL cosNk
dtc

d θβψ −= 1 (11)

In general an electron path will differ from the reference electron (βz = βR).  We
introduce perturbed quantities that represent the difference between an electron and the
reference.  Also consider the acceleration gradient dzdWW =′ , where W = mec

2γ is
the electron energy.  The acceleration gradient for the reference electron, using Eqs. 9a,
10b, and the identity d(βγ) = dγ/β, is

RR coseEW ψ0=′ (12)

Consider the perturbed quantities βx, βy, z

~β = β−βR, ψ~ = ψ−ψR.  The equation of
motion in one transverse direction (x) is then governed by

0
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where the factor, LR kmc23γ− , has been divided out.  The “wave number” kβ,
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is the length scale for the oscillatory “betatron” motion.  If the change in γR can be
ignored, the transverse motion has the form  ( )ϕβ += ctkcosxx max ,where xmax and ϕ
are constants.  Consider parameters relevant to the STELLA experiment:  RW ′ = 100

MeV/m;  W = 50 MeV;  θL = 20 mrad;  N ≈ 1;  λL = 10 µm; and ψR = 0.85π.  Then the
betatron “wave number” is  kβ = 11.3 m−1.

Although Eq. (13) is for a single particle, it traces a figure in phase space that
coincides with that of a shell distribution.  Therefore, an emittance can be found.  The
normalized emittance is 1/π  times the area of the closed curve that the particle traces
in x-px phase space, where px = γdx/dz.  The semi-major axes of the phase-space ellipse
are xmax and γkβxmax:  thus 2

maxN xkβγε = .  We are interested in the filled-in distribution

for which the shell corresponding to xmax is the phase space boundary.  The emittance
for this “top hat” distribution, averaging over all particles, is half that of the bounding
shell: 22

maxN xkβγε = .  For axisymmetry (equal emittance in x and y) the cross-

sectional area of the beam is βγεππ kxA Nmax 22 == .

Consider the longitudinal particle dynamics accounting only for the laser force.
Expand Eq. (11) to separate reference and perturbed parts.  If βR ≈ 1, then
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where again the factor, LR kmc23γ− , has been divided out.  The “wave number” k||,
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is the length scale for longitudinal oscillation, and represents the bunching effect of the
laser.  If θL >> 1/γR, the longitudinal oscillation is much slower than the transverse
(betatron), i.e. k|| << kβ.

Consider the effect of space charge on longitudinal motion.  The space charge force
is F = −eE, where the space charge field satisfies Poisson’s equation, ∇⋅E = −en/ε0.  In

the quasi-1D case ( ) ( )Rpz zzcmcF −= 223 ωγ .  Using the perturbed phase,

( )RL zzk~ −−=ψ , the space-charge force to be included on the right side of Eq. (15) is

( )ψω ~cF pz
2= (17)



where again, LR kmc23γ− , has been factored out.  The plasma frequency can be
expressed in terms of reference quantities.  Given fixed cross-sectional area, continuity
implies nlµ = n0λL, where n0 is the unbunched density and lµ is the full width
(longitudinal) of a microbunch; all electrons in the microbunch lie in the range −lµ/2 ≤
z−zR ≤ lµ/2.  The unbunched case has lµ = λL.  Define ±ψµ as the phase of the extremal
electrons, z−zR = ±lµ/2:  then n = n0⋅π/ψµ.  With QM = en0AlM, we have

( ) µψπω 22
SCp kc = , where the constant associated with space charge oscillations is
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Adding the space-charge force in the equation of motion, Eq. (15),
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Solve this for the outermost electrons µψψ ±=~ :
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The solution has two parts: oscillatory (homogeneous solution) and quasi-steady
(inhomogeneous); our interest is in the latter.  The quasi-steady phase spread is

e

Q

k

Nr

k

k M

NM

Le

||

SC ⋅==
β

µ ε
θππψ

l

2

2

2

222 (21)

Practical example

Consider the parameters relevant to the STELLA experiment:  RW ′ = 100 Mev/m;

W = 50 MeV;  θL = 20 mrad;  N ≈ 1;  λL = 10 µm;  ψR = 0.85π;  QM = 0.15 nC;  lM = 3
mm; and εN = 10−6(π m-rad), the quasisteady phase of the outermost electrons is |2ψµ|/π
= 0.06.  Thus, for these conditions the phase spread by space charge effects is relatively
small.  However, this becomes more difficult for high-energy accelerators.  The scaling
of phase spread with important parameters is
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This suggests that for high energy (W) the space charge phase spread will become
significant.  This is a consequence of the following:  the bunching effect of the laser,

322 11 γγ ∝∝ Wk|| , decreases faster with increasing energy than the debunching effect

of space charge, 2522 1 γγβ ∝∝ kkSC .  This tendency is mitigated if the acceleration

gradient (W ′ ) is also increased.
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